Flood Risk Assessment & Drainage Strategy

Salcombe Avenue, Jarrow

South Tyneside Homes

December 2016

Document Validation

Revision History

Revision Ref	Issue Date	Purpose of issue / description of revision
А	22/12/2016	Pre Planning Application
В	31/03/2016	Updated to include NWL response to PDE

Quality Assurance

Purpose of issue / description of revision / version "Reason for Issue"			
	Prepared by	Checked by	Approved by
Name	Mark Bryden	David Webb	John Nielsen
Signature	MM.	K	J. Dielin

This report has been prepared by CK21 Ltd with all reasonable skill, care and diligence, within the terms of the Contract with the Client. The report is confidential to the Client and CK21 Ltd accepts no responsibility of whatever nature to third parties to whom this report may be made known.

No part of this document may be reproduced without the prior written approval of CK21 Ltd.

Contents

Introduction	4
1. Development Site & Location	5
2. Sequential Test	7
3. Climate Change	13
4. Site Specific Flood Risk	15
Flood Risk to the Site	16
Fluvial Flooding	16
Pluvial Flooding	17
Groundwater Flooding	18
Sewer Flooding	19
Conclusion	20
5. Surface Water Drainage Strategy	21
6. Occupants & Users of the Development	26
7. Exception Test	26
8. Residual Risk	26
Foul Water Drainage Strategy	27
Appendix A	28
Proposed Site Layout	28
Appendix B	29
Greenfield Runoff Calculations	29
Appendix C	30
Surface Water Attenuation Calculations	30
Appendix D	31
Proposed Drainage Strategy Plan	31
Appendix E	32
Surface Water Drainage Calculations	32
Appendix F	33
SuDS Maintenance Plan	33
Appendix G	34
NWL Pre Development Enquiry Response & Plans	34
Appendix H	35
SuDS Detail Drg	35

Introduction

Introduction

CK21 have been appointed by South Tyneside Homes to prepare a Drainage Strategy to supplement their FULL planning application for a proposed residential development off Salcombe Avenue, Jarrow.

Whilst the development area is 0.38 ha, under the 1 hectare threshold to require a full Flood Risk Assessment, the flood risk has been assessed.

The aim of this flood risk assessment report is to evaluate the current proposals with regard to flood risk and drainage, and identify potential flood risk to the development site. CK21 have undertaken the following as part of this study:

Assessment of the development potential of the site, with regard Flood Risk, in line with the National Planning Policy Framework and Technical Guidance to the National Policy Framework, (NPPF) and the South Tyneside Council Strategic Flood Risk Assessment, (SFRA).

As set out in the National Planning Policy Framework, inappropriate development in areas at risk of flooding should be avoided by directing development away from areas at highest risk, but where development is necessary, making it safe without increasing flood risk elsewhere. For these purposes:

"areas at risk of flooding" means land within Flood Zones 2 and 3; or land within Flood Zone 1 which has critical drainage problems and which has been notified to the local planning authority by the Environment Agency;

"flood risk" means risk from all sources of flooding - including from rivers and the sea, directly from rainfall on the ground surface and rising groundwater, overwhelmed sewers and drainage systems, and from reservoirs, canals and lakes and other artificial sources.

A risk based approach should be adopted at all levels of planning. Applying the source pathwayreceptor model to planning for development in areas of flood risk requires;

A strategic approach which avoids adding to the causes or "sources" of flood risk, by such means as avoiding inappropriate development in flood risk areas, minimising run-off from new development onto adjacent and/or other downstream property, and into the river systems;

Managing flood "pathways" to reduce the likelihood of flooding by ensuring that the design and location of the development maximises the use of SUDS, and takes account of its susceptibility to flooding, the performance and processes of river/coastal systems and appropriate flood defence infrastructure, and of the likely routes and storage of floodwater including its influence on flood risk downstream;

Reducing the adverse consequences of flooding on the "receptors" (i.e. people, property, infrastructure, habitats and statutory sites) b avoiding inappropriate development in areas at risk of flooding.

The report is presented in the structure of *"Paragraph 068 of the Planning Practice Guidance – Model checklist for a site specific flood risk assessment".*

1. Development Site & Location

The development site is located off Salcombe Avenue, Jarrow, South Tyneside. The site is currently a Greenfield site (farmland) and measures approximately 0.38 hectares.

- Nearest post code = NE32 3QZ
- Ordnance Survey X = 433743
- Ordnance Survey Y = 564247
- Nat Grid Ref = NZ337642

Figure 1 - Location Map

The site is within Flood Zone 1, as classified by the Environment Agency flood maps. The nearest watercourse is River Don, which is located approximately 300m to the north of the development site. The development lies within the natural catchment of the River Don.

Figure 2 – Extract from FEH Catchment Map, indicating the site within the catchment of the River Don

The development proposals are to construct a 20 unit residential development off the existing Salcombe Avenue. The units consist of bungalows, 2 storey housing and apartments.

A proposed site plan can be found within the appendices.

The impermeable areas of the proposed new development will occupy approximately 60% of the developed site. An increase from the 100% permeable current site conditions.

The proposed development would not involve a change of planning use category, the developments Flood Risk Vulnerability classification is considered as **'More vulnerable'**.

2. Sequential Test

As set out in the National Planning Policy Framework, the aim of the Sequential Test is to steer new development to areas with the lowest probability of flooding. The flood zones (see table 1) are the starting point for this sequential approach. Zones 2 and 3 are shown on the flood map1 with Flood Zone 1 being all the land falling outside Zones 2 and 3. These flood zones refer to the probability of sea and river flooding only, ignoring the presence of existing defences.

Strategic Flood Risk Assessments (see paragraphs 7-8) refine information on the probability of flooding, taking other sources of flooding and the impacts of climate change (see paragraphs 11-15) into account. They provide the basis for applying the Sequential Test, on the basis of the flood zones in table 1. Where table 1 indicates the need to apply the Exception Test (as set out in the National Planning Policy Framework), the scope of a Strategic Flood Risk Assessment will be widened to consider the impact of the flood risk management infrastructure on the frequency, impact, speed of onset, depth and velocity of flooding within the flood zones considering a range of flood risk management maintenance scenarios. Where a Strategic Flood Risk Assessment is not available, the Sequential Test will be based on the Environment Agency flood zones.

The overall aim should be to steer new development to Flood Zone 1. Where there are no reasonably available sites in Flood Zone 1, local planning authorities allocating land in local plans or determining planning applications for development at any particular location should take into account the flood risk vulnerability of land uses (see table 2) and consider reasonably available sites in Flood Zone 2, applying the Exception Test if required (see table 3). Only where there are no reasonably available sites in Flood Zones 1 or 2 should the suitability of sites in Flood Zone 3 be considered, taking into account the flood risk vulnerability of land uses and applying the Exception Test if required.

Table 1: Flood zones

Zone 1 - low probability

Definition

This zone comprises land assessed as having a less than 1 in 1,000 annual probability of river or sea flooding (<0.1%).

Appropriate uses ;

All uses of land are appropriate in this zone.

Flood risk assessment requirements ;

For development proposals on sites comprising one hectare or above the vulnerability to flooding from other sources as well as from river and sea flooding, and the potential to increase flood risk elsewhere through the addition of hard surfaces and the effect of the new development on surface water run-off, should be incorporated in a flood risk assessment. This need only be brief unless the factors above or other local considerations require particular attention.

Policy aims :

In this zone, developers and local authorities should seek opportunities to reduce the overall level of flood risk in the area and beyond through the layout and form of the development, and the appropriate application of sustainable drainage systems.

Zone 2 - medium probability

Definition :

This zone comprises land assessed as having between a 1 in 100 and 1 in 1,000 annual probability of river flooding (1% - 0.1%), or between a 1 in 200 and 1 in 1,000 annual probability of sea flooding (0.5% - 0.1%) in any year.

Appropriate uses :

Essential infrastructure and the water-compatible, less vulnerable and more vulnerable uses, as set out in table 2, are appropriate in this zone. The highly vulnerable uses are *only* appropriate in this zone if the Exception Test is passed.

Flood risk assessment requirements :

All development proposals in this zone should be accompanied by a flood risk assessment.

Policy aims;

In this zone, developers and local authorities should seek opportunities to reduce the overall level of flood risk in the area through the layout and form of the development, and the appropriate application of sustainable drainage systems.

Zone 3a - high probability

Definition

This zone comprises land assessed as having a 1 in 100 or greater annual probability of river flooding (>1%), or a 1 in 200 or greater annual probability of flooding from the sea (>0.5%) in any year.

Appropriate uses :

The water-compatible and less vulnerable uses of land (table 2) are appropriate in this zone. The highly vulnerable uses should not be permitted in this zone.

The more vulnerable uses and essential infrastructure should only be permitted in this zone if the Exception Test is passed. Essential infrastructure permitted in this zone should be designed and constructed to remain operational and safe for users in times of flood.

Flood risk assessment requirements :

All development proposals in this zone should be accompanied by a flood risk assessment.

Policy aims :

In this zone, developers and local authorities should seek opportunities to:

reduce the overall level of flood risk in the area through the layout and form of the development and the appropriate application of sustainable drainage systems.

Relocate existing development to land in zones with ta lower probability of flooding; and

Create space for flooding to occur by restoring functional floodplain and flood flow pathways and by identifying, allocating and safeguarding open space for flood storage.

Zone 3b - the functional floodplain

Definition

This zone comprises land where water has to flow or be stored in times of flood.

Local planning authorities should identify in their Strategic Flood Risk Assessments areas of functional floodplain and its boundaries accordingly, in agreement with the Environment Agency. The identification of functional floodplain should take account of local circumstances and not be defined solely on rigid probability parameters. But land which would flood with an annual probability of 1 in 20 (5%) or greater in any year, or is designed to flood in an extreme (0.1%) flood, should provide a starting point for consideration and discussions to identify the functional floodplain.

Appropriate uses

Only the water-compatible uses and the essential infrastructure listed in table 2 that has to be there should be permitted in this zone. It should be designed and constructed to:

- remain operational and safe for users in times of flood;
- result in no net loss of floodplain storage;
- not impede water flows; and not increase flood risk elsewhere.
- Essential infrastructure in this zone should pass the Exception Test.

Flood risk assessment requirements :

All development proposals in this zone should be accompanied by a flood risk assessment.

Policy aims :

In this zone, developers and local authorities should seek opportunities to:

- reduce the overall level of flood risk in the area through the layout and form of the development and the appropriate application of sustainable drainage systems;
- relocate existing development to land with a lower probability of flooding.

Table 2: Flood risk vulnerability classification

Essential infrastructure Essential transport infrastructure (including mass evacuation routes) which has to cross the area at
Essential utility infrastructure which has to be located in a flood risk area for operational reasons, including electricity generating power stations and grid and primary substations; and water treatment works that need to remain operational in times of flood. Wind turbines.
Highly vulnerable Police stations, ambulance stations and fire stations and command centres and telecommunications installations required to be operational during flooding. Emergency dispersal points. Basement dwellings
Caravans, mobile homes and park homes intended for permanent residential use. Installations requiring hazardous substances consent4. (Where there is a demonstrable need to locate such installations for bulk storage of materials with port or other similar facilities, or such installations with energy infrastructure or carbon capture and storage installations, that require coastal or water-side locations, or need to be located in other high flood risk areas, in these instances the facilities should be classified as "essential infrastructure").
Mara uulaarahia
Hospitals
Residential institutions such as residential care homes, children's homes, social services homes,
prisons and hostels. Buildings used for dwelling houses, student halls of residence, drinking establishments, nightclubs and
hotels.
Non-residential uses for health services, nurseries and educational establishments.
Sites used for holiday or short-let caravans and camping, subject to a specific warning and evacuation
plan.
Less vulnerable Police, ambulance and fire stations which are not required to be operational during flooding. Buildings used for shops, financial, professional and other services, restaurants and cafes, hot food takeaways, offices, general industry, storage and distribution, non- residential institutions not included in "more vulnerable", and assembly and leisure. • Land and buildings used for agriculture and forestry.
Waste treatment (except landfill and hazardous waste facilities). Minorale working and proceeding (except for early and gravel working)
Water treatment works which do not need to remain operational during times of flood.
• Sewage treatment works (if adequate measures to control pollution and manage sewage during
Water-compatible development Flood control infrastructure.
Water transmission infrastructure and pumping stations.
Sewage transmission infrastructure and pumping stations. Sand and gravel working.
Docks, marinas and wharves.
Navigation facilities. Ministry of Defence defence installations
Ship building, repairing and dismantling, dockside fish processing and refrigeration and compatible
activities requiring a waterside location.
Lifeguard and coastguard stations.
Amenity open space, nature conservation and biodiversity, outdoor sports and recreation and essential
Essential ancillary sleeping or residential accommodation for staff required by uses in this category.
subject to a specific warning and evacuation plan

Table 3: Flood risk vulnerability and flood zone 'compatibility'

Flood risk vulnerability classification (see table 2)	Essential infrastructure	Water compatible	Highly vulnerable	More vulnerable	Less vulnerable
Zone 1	~	~	~	~	*
Zone 2	~	~	Exception Test Required	~	~
Zone 3a	Exception Test Required	~	x	Exception Test Required	~
Zone 3b functional Floodplain	Exception Test Required	√	x	x	x

Key:

✓ Development is appropriate.

X Development should not be permitted.

Notes to table 3:

This table does not show:

- a. the application of the Sequential Test which guides development to Flood Zone 1 first, then Zone 2, and then Zone 3;
- b. flood risk assessment requirements; or
- c. the policy aims for each flood zone.

3. Climate Change

The National Planning Policy Framework (NPPF) sets out how the planning system should help minimise vulnerability and provide resilience to the impacts of climate change. NPPF and supporting planning practise guidance on Flood Risk and Coastal change explain when and how flood risk assessments should be used. This includes demonstrating how flood risk will be managed now and over the developments lifetime, taking climate change into account. Local planning authorities refer to this when preparing local plans and considering planning applications.

Revised Environment Agency Climate Changes Allowances for Flood Risk Assessments

In February 2016 the Environment Agency released their revised climate change allowances, for use when considering flood risk.

What are the climate change allowances?

To assess the potential impacts that climate change may have on extreme rainfall, river flood flows, sea level rise and storm surges, climate change allowances are provided in Annex 1. The climate change allowances quantify the potential change (as either mm or percentage increase, depending on the variable) to the baseline. The climate change allowances are based on the best available, credible, peer-reviewed scientific evidence from UKCP09, but given the complexity of the science around climatic projections, there are significant uncertainties attributed to the climate change allowances. This is why the climate change allowances are presented as a range of possibilities (Lower, Central, Higher Central and Upper), to reflect the potential variation in climate change impacts over three epochs from the present day to 2115. It is recommended that the performance of flood risk management options are assessed against all of the change allowances covering the whole of the decision lifetime.

	Total potential change anticipated for '2020s' (2015-39	Total potential change anticipated for '2050s' (2040-69	Total potential change anticipated for '2080s' (2070-15)
Northumbria River Basir	IS		
Upper (90 th percentile)	20%	30%	50%
Higher Central (70 th percentile)	15%	20%	25%
Central (50% percentile)	10%	15%	20%
Lower (10 th percentile)	5%	5%	10%

Table 1: Potential changes in peak river flow for Northumbria River Basin District

	Total potential change anticipated for '2020s' (2015-39	Total potential change anticipated for '2050s' (2040-69	Total potential change anticipated for '2080s' (2070-15)
Northumbria River Basir	IS		
Upper estimate	10%	20%	40%
Central estimate	5%	10%	20%

Table 2: Change to extreme rainfall intensity compared to a 1961-90 baseline

Impact on Development

The development design proposals should allow for the effects of climate change, appropriate to the anticipated lifetime of the development.

The proposed development is outside the zone of influence of any increase in river flows, however, an allowance for 40% climate change should be allowed for in the design of the surface water drainage network. With consideration given to site and finished floor levels with regards potential flood paths for the extreme storm events.

4. Site Specific Flood Risk

The following chapter will review the potential flood risk to the development from all sources, in accordance with the requirements of both the NPPF and the Local Authority Planning Validation Checklist.

The impact of the following potential sources of risk of flooding to the proposed development over its expected lifetime, including appropriate allowances for the impact of climate change will be considered and assessed.

• Fluvial Flooding

This occurs when a river or stream is unable to take on water draining in to it from surrounding land. The additional water causes the water to risk above its banks or retaining structures and subsequently flows onto the land.

Flood Zones

A flood zone is described as the area of land which will flood if there is river or coastal flooding. This data does not account for the presence of flood defences. This data displays the area of land that is likely to be flooded in such an event. The Flood Zones are in grouped into three categories:

Flood Zone 1 – Low probability less than 0.1% chance in any year (any area that is not considered at risk of flooding)

Flood Zone 2 (identified in green on the Groundsure flood maps) – Medium probability, greater than 0.1% but less than 1% from rivers and 0.5% from the sea.

Flood Zone 3 is split into 3a and 3b.

Zone 3a High risk (1% of greater from rivers and 0.5% or greater from the sea in any given year).

Zone 3b is the "functional floodplain" or used as a flood storage area – this is a very high flood risk area.

Pluvial Flooding

Results from overland flow before the runoff enters a watercourse or sewer. It is usually the result of high intensity rainfall, but can occur with lower intensity rainfall when the land has a low permeability and/or is already saturated, frozen or developed.

• Groundwater Flooding

Groundwater flooding is caused by the emergence of water from underground, either at point or diffuse locations. The occurrence of groundwater flooding is usually very local and unlike flooding from rivers and the sea, does not generally pose a significant risk to life due to the slow rate at which the water level rises. Sewerage Flooding

Extreme rainfall events may overwhelm sewer systems and cause local flooding. This is not something that can be predicted/modelled. Historical sewer flood events can be found on the DG5 'At Risk Register' which is compiled by water companies.

Flood Risk to the Site

Fluvial Flooding

A review of the Environment Agency maps have been undertaken to assess the sites suitability for development. The site lies within flood zone 1.

Figure 3 - Extract from Environment Agency Map "Flood Risk from rivers or the sea"

The surrounding area to the site location is confirmed on the Environment Agencies' online tool as being *"an area that has A Very Low chance of flooding from rivers or the sea as being in Flood Zone 1."*

Assessment of Impact: Low

Assessment of Probability: Low

Pluvial Flooding

Reference to the Environment Agency 'Flood Risk from Surface Water' Map indicated the site is not subject to any risk. Nor, due to the topography is the site likely to receive any significant overland flows from the neighbouring areas.

There is an are identified to the west of the site, against the embankment of the A19, however, this area is outside the development boundary and will not affect the site or infrastructure.

Figure 4 - Extract from Environment Agency Map "Flood risk from surface water"

Assessment of Impact: LOW Assessment of Probability: LOW

Groundwater Flooding

The Environment Agencies Groundwater source protection Zones Map indicates that the area is not within a Groundwater Source Protection Zone.

The EA online map of groundwater vulnerability identifies the development site to be located above a Minor Aquifer high vulnerability. An aquifer at high vulnerability indicates that the area is likely to have high leaching soils which could make it unsuitable for infiltration drainage due to potential mobilisations of pollutants. This will be confirmed following a full intrusive ground investigation. Minor aquifers are typically granular bands within clay deposits and have limited resource potential.

Customers in Wales - From 1 April 2013 Natural Resources Wales (NRW) has taken over the responsibilities of the Environment Agency in Wales. © Environment Agency copyright and database rights 2018. © Ordnance Survey Crown copyright. All rights reserved. Environment Agency, 100028380. Contains Royal Mail data © Royal Mail copyright and database right 2018. This service is designed to inform members of the public, in line with our terms and conditions. For business or commercial use, please contact us.

Figure 5 - Extract from Environment Agency Map 'Groundwater'

In addition an extract from the DEFRA Soilscapes map indicates that the underlying soil conditions are described as 'loamy & clayey' with 'Slowly permeable seasonally wet, slightly acid but base rich loamy and clayey soils." The drainage properties are described as 'impeded drainage'.

Freely draining soils absorb rainfall readily and allow it to drain through to underlying layers. Slightly impeded drainage refers to soils with a tight, compact deep subsoil that impedes downward water movement; after heavy rainfall, particularly during the winter, the subsoil becomes waterlogged. In soils with impeded drainage the effect is more severe and winter waterlogging results in very wet ground conditions. In the uplands, many soils have a greasy surface peat layer that holds water through the winter. These soils are described as having surface wetness, and can be reasonably dry beneath. In low-lying sites, permeable soils are often affected by high ground water that has drained from the surrounding landscape. They are described as naturally wet.

Salcombe Avenue, STH

FRA & Drainage Strategy

Figure 6 - Extract from DEFRA Soilscapes Map

Flooding from Ground water is considered to be of low risk.

Assessment of Impact:	LOW
Assessment of Probability:	LOW

Sewer Flooding

Northumbrian Water have provided a copy of the Sewer Flooding plan for the area (App G). The plan provides an indication of 100m squares within which sewer flooding, caused by a lack of capacity, have occurred up to and including the 1 in 20 year event.

NWL have confirmed there are no reported sewer flooding incidents for this site, or in areas within the catchment of this site.

NWL categorise the risk as:

- Blue hatched areas reported sewer flooding from sewers lower than 1 in 20 year storm.
- Red hatched areas reported sewer flooding from sewers during an extreme event greater than 1 in 20 year storm.

Significant flooding is not expected from the public sewer network and therefore the risk of sewer flooding is considered to be low. This is due to the fact the "at risk" locations are positioned beyond the site and there are no sewer flooding reports in the immediate vicinity of the site.

A review of the topography confirms that there is no risk of flows in this identified area reaching the proposed development site.

Assessment of Impact: LOW Assessment of Probability: LOW

The risk of sewer flooding is considered to be of low risk.

Conclusion

It can be concluded that the proposed development is not at risk of flooding from any of the sources examined within this assessment.

5. Surface Water Drainage Strategy

Managing surface water

In this chapter the report will show how surface water runoff generated by the developed site will be managed. This chapter should be read in conjunction with Existing & Proposed Drainage Arrangement drawings and calculations provided within the appendices.

The Drainage Hierachy

The surface water drainage strategy has been initially developed in line with, and will continue to comply with, the requirements of the Tyne & Wear Validation Document, Section 14.

Information needs to be submitted to evidence all surface water shall be managed for the development. The drainage hierarchy is:

- 1. Infiltration
- 2. Watercourse
- 3. Surface water sewer
- 4. Combined sewer

It requires infiltration systems to be investigated before controlled attenuation discharge to watercourse is considered. Only then if these forms of flood attenuation are not possible should developments consider surface water and eventually combined sewer means of surface water drainage.

1. Infiltration

A review of the DEFRA Soilscapes mapping and experience of development in the local area would indicate that disposal of surface water from the proposed development via means of infiltration will not be feasible. The underlying soils are not deemed to be suitable to accommodate infiltration.

2. <u>Watercourse</u>

An existing ordinary watercourse has been identified approximately 300m to the north of the site. Due to topography and the existing build environment it is not considered feasible to make a direct connection to the watercourse.

3. <u>Sewers</u>

There is an existing NWL surface water sewer, flowing South/North, on the western boundary of the development. It is proposed to make connection to this sewer. The flows will be restricted to the equivalent Greenfield run off rates. A pre development enquiry was submitted to NWL, December 2016, identifying manhole 6302 as the preferred outfall.

NWL's response is included within the appendices, demonstrating their acceptance of the proposed surface water flows to the sewer.

Design Principals

It is proposed to discharge the surface water from the development into the adjacent NWL surface water sewer. The discharge will be restricted to equivalent greenfield run off rate)discussed later within this chapter).

NWL's PDE response is included within App G, indicating their acceptance to accept the above flow rate into their SW sewer.

The surface water conveyance system will be designed to ensure no flooding during the 1 in 30 year event, ensuring no flooding from the 1 in 100 year, 6 Hour event leaves site.

In addition, if necessary the system will be designed as such to ensure that any flood volumes leaving site, from the critical 1 in 100 year design storm, are no greater than the equivalent pre development run off.

An allowance for the impact of climate change will be included for within the design. The Environment Agency generally advises that a lifespan of 100 years should be used for residential developments. The Technical Guidance to the NPPF states that for the time period 2070 to 2115, peak rainfall should be increased by 40% to account for the possible impacts of climate change.

Careful design of on site features and levels will be necessary to ensure that no property is at risk of damage during these events.

Surface water disposal will be managed through the incorporation of appropriate Sustainable Urban Drainage Systems (SuDS). There are many different SuDS components that can be used on a site. Each site will have unique characteristics and these should guide the selection of the most appropriate set of SuDS techniques.

Existing Greenfield Runoff rates

The existing 0.38 hectare site is currently occupied 100% be greenfield (farmland). The development site is within the catchment of the River Don, which lies approximately 300m to the north of the site.

Estimated Site Discharges	IH124 Results
Qbar (I/s)	0.95
1 in 1 year (l/s)	0.82
1 in 30 year (l/s)	1.67
1 in 100 year (l/s)	1.98

The following existing greenfield run off rates have been calculated:

Figure 7 - Existing Greenfield runoff rates

(Full calculation can be found within the appendices)

Proposed Post Development Mitigation

It is proposed to limit the peak discharge from the site to the outfall of the receiving sewer to the equivalent greenfield runoff rates. However it is recognised that a minimum flow rate of 5 l/s should be applied to any site.. This would be achieved through the use of SUDs and flow control devices.

The drainage network, attenuation systems and site levels would be designed to accommodate a critical rainfall event of 1:100 year + 40% allowance for climate change.

The methodology outlined within EA/DEFRA R&D Technical Report W5-074 'Preliminary Rainfall Runoff Management for Developments' has been utilised in order to calculate the approximate post development surface water runoff volumes and thus the required storage volumes.

Estimated Storage Volumes	Volume m3	
Interception Storage	8.80	
Attenuation Storage	91.85	
Long term storage	0.00	
Total Storage	100.65	

Figure 8 - Estimated Storage Volumes

Note the above volumes are based on single calculation. Results may vary from the modelling of the actual network within software, such as Windes. The results of the Windes modelling may result in greater, or lesser, attenuation requirements.

This advice of the SUDS Manual (CIRIA C697) is that where applicable storage requirements are defined as Interception storage, Attenuation Storage, Long term storage.

Interception storage (m³)

Interception storage is required in order to ensure that no run-off passes directly to the river for rainfall depths of 5mm or less. This is aimed at trying to replicate greenfield runoff response when no runoff is likely to take place for most small events. This type of storage is principally aimed at river water quality protection - polluted water is prevented from entering the water course for all small rainfall events. A 5mm rainfall threshold will reduce the number of runoff events into a receiving water body by at least 50%.

Interception of 5mm requires the use of vegetation based drainage systems, infiltration units or rainwater harvesting systems.

Attenuation storage with/without Long Term Storage (m³)

Attenuation storage is provided to enable the rate of runoff from the site into the receiving water to be limited to an acceptable rate to protect against erosion and flooding downstream. The attenuation storage volume is a function of the degree of development relative to the greenfield discharge rate.

Attenuation storage should preferably avoid using underground storage tanks which do not provide any form of treatment and have higher safety risks associated with any maintenance.

Long term storage (m³)

Long term storage is similar to Attenuation storage, but aims to specifically address the additional volume of runoff caused by the development compared to pre-development runoff. Long-Term storage is specifically aimed at runoff from extreme events to limit flood impact downstream.

This volume difference should be infiltrated to the ground or, if this is not possible, discharged to the receiving water at very low flow rates (less than 2 l/s/ha) so as to minimise the risk of exacerbating river flooding. In this situation, the normal attenuation discharge limit should be adjusted (reduced) to take account of any discharge rate taking place from the Long Term Storage system.

Long Term Storage is calculated based on the difference between greenfield and development runoff volumes using the 100 year 6 hours rainfall event. This is a pragmatic criterion and avoids the need for complex analysis of extreme rainfall series.

Long Term Storage can be provided using a number of techniques:

- infrequent flooding of public open spaces- a minimum of 1 in 5 to 1 in 10 year frequency;

- flooding of an area adjacent to the pond which cannot drain back through the pond outfall;

- providing an equivalent volume in the form of infiltration units or rainwater harvesting where this is designed for stormwater control.

- storage with a very small outflow control orifice (2 L/s/ha), where there is minimal risk of blockage.

This methodology has been applied in order to determine the estimated surface water storage requirements for the post development site.

A copy of the preliminary Surface Water Drainage Strategy Plan and associated drainage calculations can been found within the appendices.

Water Quality

Reference to the CIRIA C753, The SuDS Manual (2015), section 26.7, details the method to determine the SuDS pollution mitigation indices.

To deliver adequate treatment, the selected SuDS components should have a total pollution mitigation index (for each contaminant type)

Land Use	Pollution Hazard Levels	Total suspended solids (TSS)	Metals	Hydrocarbons
Other roofs (typically commercial)	Low	0.3	0.4*	0.05
Non residential car parking with infrequent change	Low	0.5	0.4	0.4

Figure 9 - Pollution hazard indices for different land use classifications

Types of SuDS Component	TSS	Metals	Hydrocarbons
Bioretention System	0.8	0.8	0.8

Figure 10 - Indicative SuDS Mitigation indices for discharges to surface waters (suitable components)

Reference to the Surface Water Drainage strategy will indicate that a combination of a pond and swale has been selected as an appropriate compliant treatment train. In addition this combination of components can be utilised to provide the attenuation requirements.

SuDS Maintenance

A copy of the preliminary SuDS Maintenance responsibilities schedule has been provided within the appendices. (App F)

The maintenance of the SuDS feature would be undertaken by South Tyneside Homes.

6. Occupants & Users of the Development

Pre Development site users

The current pre development site is greenfield and as such has no occupants. Site users would include the general public.

Post Development site users

As a result of the development an increase in occupants will occur.

Flood Risk management/evacuation plan

Due to the low risk of flooding to the site (from any source) there is unlikely to be any restrictions placed on the site design. (i.e. restrictions to accommodation on ground floor etc), similarly no specific restrictions will be imposed for the requirement of a dedicated flood evacuation route or plan.

Reference to the site plan indicates that the buildings are located at a higher elevation than the proposed SuDS features and that in the event of a critical event access to/from the development would not be restricted.

Emergency access is freely available from Tursdale Road, which itself does not suffer from any flooding issues in the locality.

7. Exception Test

In this instance as the proposed development is solely within Flood Zone 1 the exception test is not required.

8. Residual Risk

The only residual risks associated with flood risk relate the risk of blockage/damage to the proposed drainage network. To mitigate this risk all components will be specified and designed to current building regulations and guidance. A maintenance schedule has/will be produced to cover the SuDS features.

Foul Water Drainage Strategy

The nearest suitable outfall for the foul drainage from the proposed development has been identified as the existing combined sewerage system within Salcombe Avenue the east of the site.

The developer has submitted a Pre Development Enquiry to NWL. A pre development enquiry was submitted to NWL in December 2016.

Figure 11 - Extract from NWL Sewer/Water Plan

Proposed Site Layout

Salcombe Avenue, STH FRA & Drainage Strategy

Appendix B

Greenfield Runoff Calculations

Site name:	Salcombe Avenue
Site location:	Jarrow

This is an estimation of the greenfield runoff rate limits that are needed to meet normal best practice criteria in line with Environment Agency guidance "Preliminary rainfall runoff management for developments", W5-074/A/TR1/1 rev. E (2012) and the CIRIA SUDS Manual (2007). It is not to be used for detailed design of drainage systems. It is recommended that every drainage scheme uses hydraulic modelling software to finalise volume requirements and design details before drawings are produced.

Greenfield runoff estimation for sites

Site coordinates

Latitude:	54.97210° N
Longitude:	1.47505° W
Reference:	gcybwrmgsy5j / 0.38
Date:	22 Dec 2016

Site characteristics

Total site area	0.38	ha
Significant public open space	0.16	ha
Area positively drained	0.22	ha

Methodology

Greenfield runoff method	IH124
Qbar estimation method	Calculate from SPR and SAAR
SPR estimation method	Calculate from SOIL type
SOIL type	4
HOST class	N/A
SPR	0.47

Hydrological characteristics

	Default	Edited	_
SAAR	638	638	mm
M5-60 Rainfall Depth	17	17	mm
ʻr' Ratio M5-60/M5-2 day	0.3	0.3	
FEH/FSR conversion factor	0.92	0.92	
Hydrological region	3	3	
Growth curve factor: 1 year	0.86	0.86	
Growth curve factor: 10 year	1.45	1.45	
Growth curve factor: 30 year	1.75	1.75	
Growth curve factor: 100 year	2.08	2.08	

Greenfield runoff rates

	Default	Edited	
Qbar	0.95	0.95	l/s
1 in 1 year	0.82	0.82	l/s
1 in 30 years	1.67	1.67	l/s
1 in 100 years	1.98	1.98	l/s
Please note that a minimum flow of 5 l/s	applies to any s	site	

HR Wallingford Ltd, the Environment Agency and any local authority are not liable for the performance of a drainage scheme which is based upon the output of this report.

Salcombe Avenue, STH FRA & Drainage Strategy

Appendix C

Surface Water Attenuation Calculations

Site name:	Salcombe Avenue
Site location:	Jarrow

This is an estimation of the storage volume requirements that are needed to meet normal best practice criteria in line with Environment Agency guidance "Preliminary rainfall runoff management for developments", W5-074/A/TR1/1 rev. E (2012) and the CIRIA SUDS Manual (2007). It is not to be used for detailed design of drainage systems. It is recommended that every drainage scheme uses hydraulic modelling software to finalise volume requirements and design details before drawings are produced.

Surface water storage requirements for sites

Site coordinates

Latitude:	54.97198° N
Longitude:	1.47511° W
Reference:	gcybwrmfgry3 / 0.22
Date:	22 Dec 2016

Site characteristics

Total site area	0.38	ha
Significant public open space	0.16	ha
Area positively drained	0.22	ha
Impermeable area	0.22	ha
Percentage of drained area that is impermeable	100	%
Impervious area drained via infiltration	0	ha
Return period for infiltration system design	10	year
Impervious area drained to rainwater harvesting systems	0	ha
Return period for rainwater harvesting system design	10	year
Compliance factor for rainwater harvesting system design	66	%
Net site area for storage volume design	0.22	ha

Methodology

Greenfield runoff method	IH124
Volume control approach	Use Long Term Storage
Qbar estimation method	Calculate from SPR and SAAR
SPR estimation method	Calculate from SOIL type
SOIL type	4
HOST class	N/A
SPR	0.47

Hydrological characteristics

	Default	Edited	
SAAR	638	638	mm
M5-60 Rainfall Depth	17	17	mm
ʻr' Ratio M5-60/M5-2 day	0.3	0.3	
FEH/FSR conversion factor	0.92	0.92	
Hydrological region	3	3	
Growth curve factor: 1 year	0.86	0.86	
Growth curve factor: 10 year	1.45	1.45	
Growth curve factor: 30 year	1.75	1.75	
Growth curve factor: 100 year	2.08	2.08	

Design criteria

Climate change allowance factor	1.3	
Urban creep allowance factor	1.1	
Interception rainfall depth	5	mm

Greenfield runoff rates	Default	Edited	
Qbar	0.95	0.95	l/s
1 in 1 year	5.00	5.00	l/s
1 in 30 years	5.00	5.00	l/s
1 in 100 years	5.00	5.00	l/s
Please note that a minimum flow of 5 l/s	applies to any s	site	

Estimated storage volumes

Default	Edited	
8.80	8.80	m ³
91.85	91.85	m ³
0.00	0.00	m ³
26.40	26.40	m³
100.65	100.65	m³
	8.80 91.85 0.00 26.40 100.65	Behallt Edited 8.80 8.80 91.85 91.85 0.00 0.00 26.40 26.40 100.65 100.65

HR Wallingford Ltd, the Environment Agency and any local authority are not liable for the performance of a drainage scheme which is based upon the output of this report.

Salcombe Avenue, STH FRA & Drainage Strategy

Appendix D

Proposed Drainage Strategy Plan

Adoptable Drainage

150mm Concrete surround is required around pipes where the depth from finished

- Position and depth of service ducts for water, gas, electric, BT, cable and street

- natural surface water outfall. the existing topography falls North/South and be blocked by the embankment of the adjacent A19.

- discharge into the surface water sewer that runs SOUTH/NORTH within the
- been calculated as follows:

Methodology (IH124): QBar

- site.Greenfield runoff calculations have been provided separately.
- restrict and attenuate flows from site to the above rates. A Bio-Retention basin has been selected as an appropriate method of SuDS to treat the proposed flows. Bioretention systems are shallow landscaped areas that can reduce runoff rates and volumes, and treat pollution through the use of engineered soils and vegetation. They are particularly effective in delivering interception and can also provide;
- habitat and biodiversity.
- the critical 100 year event or as a result of system failure remains within the development boundary.
- design life of the development. A maintenance schedule will be provided separately.
- watercourse are as follows.

		Table 1		
Land Use	Pollution Hazard Leve	Total Suspended Solids (TSS)	Metals	Hydrocarbons
Residential Roofs	Very Low	0.2000	0.2000	0.0500
Individual Property Driveways, residential car parks, low traffic roads	Very Low	0.5000	0.4000	0.4000

Types of SUDS Component Bio-retention Basin Tota

Conclusion

section 26.7.

Table 2		
Mitigation Indices		
TSS	Metals	Hydrocarbons
0.8	0.800	0.800
0.8	0.800	0.800

nd		

Salcombe Avenue, STH FRA & Drainage Strategy

Appendix E

Surface Water Drainage Calculations
CK21 Consul	ltants									Pag	re 1		
1 Mosley St	reet												
Newcastle (Jpon Tyn	e								4			
NE1 1YE											Jun		
Date 22/12,	/2016 15	:25		Des	signed	l by	d.web	b					
File Salcor	nbe Aven	ue -	Jarro	. Che	ecked	by				Ur	ainage		
Causeway				Net	work	2015	.1			-			
	STORM	SEWE	R DESIGN	<u>I by t</u>	the Mo	<u>difi</u>	<u>ed Ra</u>	tional	Method	<u>1</u>			
			<u>Desig</u>	<u>n Cri</u>	teria	for	Stor	<u>n</u>					
		Pipe	e Sizes S'	TANDAR	D Manh	ole S	izes S	TANDARD					
		F	SR Rainfa	11 Mod	el – E	nalan	d and i	Wales					
Return Period (years) 2 Add Flow / Climate Change (%) 0													
			M5-60 (mm	n) 17.1	100		Mini	lmum Back	drop He	eight (r	n) 0.000		
	Marimum	Dainfa	Ratio	R 0.3	346 50 Mir	Dogi	Maxi	lmum Back	drop He	eight (r	n) 4.000		
Maximum Tim	Maximum Rainfall (mm/hr) 50 Min Design Depth for Optimisation (m) 0.600 Maximum Time of Concentration (mins) 30 Min Vel for Auto Design only (m/s) 1.00												
	Foul Sewage (1/s/ha) 0.000 Min Slope for Optimisation (1:X) 500												
Volumetric Runoff Coeff. 0.750													
			Desic	med w	ith Let		ffits						
			DCDIG	giica w.	LCH DCV	/CI DC	/11105						
Network Design Table for Storm													
PN Length Fall Slope I.Area T.E. Base k HYD DIA Auto													
	(m)	(m)	(1:X) ((ha)	(mins)	Flow	(1/s)	(mm) SE	CT (mm) Desig	ın		
C1 0/	0 10 072	0 100	E0 E 0	004	1 0.0		0 0	0 600	- 10	•			
S1.00)1 8.413	0.144	58.5 0	0.004	0.00		0.0	0.600	0 10	0 🗗			
S1.00	13.174	0.225	58.5 0	.008	0.00		0.0	0.600	o 10	- U 0 🔐			
S2.00	0 10.657	0.182	58.5 0	.005	1.00		0.0	0.600	o 10	0 💣			
		0 0 0 0		0.1.1				0 000	1.0	, .			
S1.00)3 4.039	0.069	58.5 0	0.011	0.00		0.0	0.600	0 10	0 ď			
S3.00	0 9.884	0.169	58.5 C	.004	1.00		0.0	0.600	o 10	0 🕜			
S1.00	04 19.193	0.328	58.5 C	0.007	0.00		0.0	0.600	o 10	0 💣			
S4.00	0 9.862	0.175	56.4 C	.004	1.00		0.0	0.600	o 10	0 💣			
			Net	work	Resul	ts Ta	<u>able</u>						
PN	Rain T	.C. t	JS/IL Σ I	Area	ΣBa	ase	Foul	Add Flow	Vel	Сар	Flow		
(1	nm/hr) (m	ins)	(m) ((ha)	Flow	(1/s)	(1/s)	(1/s)	(m/s)	(1/s)	(1/s)		
			0.100					_			0.5		
S1.000	50.00	1.18 1	2.138	0.004		0.0	0.0	0.0	1.01	7.9	0.6		
S1.001 S1.002	50.00 50.00	1.32 1 1.54 1	1.950 1.807	0.016		0.0	0.0	0.0	1.01	7.9	1.2 2.2		
51.002		~- T		J.J.J		0.0	0.0	0.0	±.01		<i>L</i> • <i>L</i>		
S2.000	50.00	1.18 <mark>1</mark>	1.991	0.005		0.0	0.0	0.0	1.01	7.9	0.6		
S1.003	50.00	1.60 1	1.581	0.032		0.0	0.0	0.0	1.01	7.9	4.3		
s3.000	50.00	1.16 <mark>1</mark>	1.746	0.004		0.0	0.0	0.0	1.01	7.9	0.6		
S1.004	50.00	1.92 1	1.512	0.043		0.0	0.0	0.0	1.01	7.9	5.9		

S4.000 50.00 1.16 11.718 0.004 0.0 0.0 0.0 1.03 8.1 0.6 ©1982-2015 XP Solutions

CK21 Consult	tants										Pag	e 2
1 Mosley Str	reet											
Newcastle Up	pon Tyn	е									4	
NE1 1YE	0.1.6.1.5	0.5									– Mi	
Date 22/12/2	2016 15	:25	Tanna	De	signed	lby o hu	l.web	b			Dr	ainage
Causeway	Je Aven	ue -	Jarro.		twork	2015	1					
Causeway				INC	CWOIN	2013.	±					
			Networ	k Desi	lgn Tab	ole fo	or St	orm				
DN	Ionath	8-11	<u>81000</u>	T Aroa	m 6	Ba	~~	ŀr	מענו		Auto	
- IN	(m)	(m)	(1:X)	(ha)	(mins)	Flow	(1/s)	(mm)	SECT	(mm)	Desig	'n
S1.005	3.115	0.055	56.4	0.008	0.00		0.0	0.600	0	100	ď	
s5.000	9.896	0.169	58.5	0.004	1.00		0.0	0.600	0	100	ď	
S1.006	5 19.524	0.197	99.3	0.009	0.00		0.0	0.600	0	150	ď	
s6.000	9.927	0.170	58.5	0.004	1.00		0.0	0.600	0	100	ď	
S1.007	5.268	0.239	22.1	0.008	0.00		0.0	0.600	0	150	ď	
s7.000	9.576	0.164	58.5	0.004	1.00		0.0	0.600	0	100	്	
S1.008	3 19.540	0.197	99.2	0.008	0.00		0.0	0.600	0	150	ď	
S8.000	9.519	0.163	58.5	0.004	1.00		0.0	0.600	0	100	ď	
S1.009	1.890	0.271	7.0	0.008	0.00		0.0	0.600	0	150	ீ	
\$9.000	9.454	0.162	58.5	0.004	1.00		0.0	0.600	0	100	ď	
\$1.010	19.547	0.197	99.0	0.008	0.00		0.0	0.600	0	150	ď	
			Ne	etwork	Resul	ts Ta	ble					
PN R	ain T	.c. 1	US/IL Σ	I.Area	аΣВа	ase	Foul	Add Fl	ow N	/el	Cap	Flow
(mr	n/hr) (m	ins)	(m)	(ha)	Flow	(1/s)	(l/s)	(1/s)) (I	n/s)	(l/s)	(l/s)
S1.005 5	50.00	1.97 1	1.184	0.050	5	0.0	0.0	0	.0 1	L.03	8.1	7.6
s5.000 s	50.00	1.16 <mark>1</mark>	1.146	0.004	1	0.0	0.0	0	.0 1	L.01	7.9	0.6
S1.006 5	50.00	2.29 1	0.927	0.069	9	0.0	0.0	0	.0 1	L.01	17.8	9.4
s6.000 5	50.00	1.16 <mark>1</mark>	0.951	0.004	1	0.0	0.0	0	.0 1	L.01	7.9	0.6
S1.007 5	50.00	2.34 1	0.730	0.081	L	0.0	0.0	0	.0 2	2.15	38.0	11.0
\$7.000	50.00	1.16 <mark>1</mark>	0.544	0.004	1	0.0	0.0	0	.0 1	L.01	7.9	0.6
S1.008 5	50.00	2.66 1	0.331	0.094	1	0.0	0.0	0	.0 1	L.01	17.8	12.7
\$8.000	50.00	1.16 <mark>1</mark>	0.500	0.004	1	0.0	0.0	0	.0 1	L.01	7.9	0.6
S1.009 5	50.00	2.67 1	0.134	0.100	5	0.0	0.0	0	.0 3	8.84	67.8	14.4
\$9.000	50.00	1.16	9.942	0.004	1	0.0	0.0	0	.0 1	L.01	7.9	0.6

©1982-2015 XP Solutions

 \$1.010
 50.00
 2.99
 9.730
 0.119
 0.0
 0.0
 1.01
 17.8
 16.1

CK21 Consult	ants										Pag	re 3
1 Mosley Str	eet											
Newcastle Up	on Tyne	e									4	A .
NE1 1YE												- Um
Date 22/12/2	016 15	:25		Des	signed	by (d.webk	с. С				LIU
File Salcomb	e Aven	ue -	Jarro.	Che	ecked	by -					Dr	ainage
Causeway				Net	twork	2015	.1					
		1	Network	Desi	qn Tab	le f	or St	orm				
		-										
PN	Length	Fall	Slope	I.Area	T.E.	в	ase	k	HYD	DIA	Aut	0
	(m)	(m)	(1:X)	(ha)	(mins)	Flow	(l/s)	(mm)	SECT	(mm)	Desi	gn
s10.000	9.236	0.158	58.5	0.004	1.00		0.0	0.600	0	100	æ	
S10.001	21.354	0.365	58.5	0.008	0.00		0.0	0.600	0	100	Ť	
Q1_011	10 010	0 070	150 0	0 01 0	0 00		0 0	0 000	_	0.05	•	
51.011	10.912	0.073	150.0	0.016	0.00		0.0	0.600	0	220	Ū.	
S11.000	3.440	0.070	48.8	0.004	1.00		0.0	0.600	0	100	f	
S1.012	3.168	0.021	150.0	0.004	0.00		0.0	0.600	0	225	- °	
S1.013 S1 014	6.685 4 851	0.051	168 4	0.000	0.00		0.0	0.600	0	225	u di i	
51.014	1.001	0.029	100.1	0.000	0.00		0.0	0.000	0	220	•	
S12.000	5.925	0.101	58.5	0.017	1.00		0.0	0.600	0	100	6	
a12,000	10 000	0 170		0 000	1 0.0		0 0	0 000	_	100		
SI3.000 S13.001	10.069 3 184	0.172	58.5 58.5	0.002	1.00		0.0	0.600	0	100		
515.001	0.101	0.001	00.0	0.000	0.00		0.0	0.000	0	100		
S12.001	5.925	0.101	58.5	0.000	0.00		0.0	0.600	0	100	6	
014 000	0 505	0 1 2 2	10.0	0 001	1 00		0 0	0 600		100	~	
514.000	2.325	0.132	19.2	0.001	1.00		0.0	0.600	0	100	Ū.	
S12.002	5.739	0.098	58.7	0.000	0.00		0.0	0.600	0	100	6	
					_							
			Ne	twork	Resul	ts Ta	able					
				T 3			Tere]	744 51	1	7-1	0	1 1
PN R	ain i n/hr) (n	nins)	(m)	(ha)	ы Ба Flow (.se 1/s)	(1/s)	(1/s)	оw \ (т	vei m/s) ((1/s)	(1/s)
	, , (-	,	()	(,		_, _,	(=, =,	(=, =,		,,	(_/ _/	(=/ =/
a10,000		1 1 5		0 004		0 0	0 0	0	0	1 01	7 0	0.0
S10.000 S10.000	50.00	1.15	9.493 9.335	0.004		0.0	0.0	0	.0.	1.01 1.01	7.9 7 9	0.6 1 7
510.001		1.01		0.012		0.0	0.0	0	•••			1.1
S1.011 S	50.00	3.16	8.845	0.148		0.0	0.0	0	.0 1	1.07	42.4	20.0
C11 000	50 00	1 05	0 500	0 004		0 0	0 0	^	0 -	1 1 1	0 7	0 6
511.000 3	50.00	1.05	9.500	0.004		0.0	0.0	0	.0 .	1.11	0./	0.0
S1.012 S	50.00	3.21	8.772	0.157		0.0	0.0	0	.0 1	1.07	42.4	21.2
S1.013 S	50.00	3.31	8.751	0.157		0.0	0.0	0	.0 1	1.14	45.3	21.2
S1.014	50.00	3.39	8.400	0.157		0.0	0.0	0	.0 1	1.00	39.9	21.2
S12.000	50.00	1.10	8.734	0.017		0.0	0.0	0	.0	1.01	7.9	2.4
								0				
\$13.000 S	50.00	1.17	9.079	0.002		0.0	0.0	0	.0 1	1.01	7.9	0.3
S13.001	50.00	1.22	8.907	0.005		0.0	0.0	0	.0 1	1.01	7.9	0.7
S12.001	50.00	1.32	8.633	0.023		0.0	0.0	0	.0 1	1.01	7.9	3.0
S14.000	50.00	1.02	9.011	0.001		0.0	0.0	0	.0 1	1.77	13.9	0.2
S12 002	50 00	1 41 9	8 532	0 021		0 0	0 0	0	0 -	1 01	7 Q	3 2
012.002		⊥• ∃ ⊥ (2.002	0.024		0.0	0.0	0	•••	U1	1.9	J.2
			©19	82-201	5 XP 3	Solut	cions					

ate 22/12/. ile Salcom auseway	2016 15 be Aven	:25 ue	Jarro.	Des	signed	by (d trobb					
ile Salcom auseway	be Aven	ue – .	Jarro.	Ch/		~ 1 ~	.webt)				nin ag
auseway				•• •••	ecked i	by					DIC	יוו ומך
				Net	twork	2015	.1					
		1	Jetwor	k Desi	gn Tab	le f	or Sto	orm				
		_										
PN	Length	Fall	Slope	I.Area	T.E.	Ba	ase	k 1	HYD	DIA	Auto	n
	(111)	(111)	(1.7)	(IIA)	(11115)	FIOW	(1/5)	(1111) 5	EC1	(11111)	Desig	11
S15.00	0 5.694	0.097	58.5	0.004	1.00		0.0	0.600	0	100) 🚅	
S15.00	1 10.212	0.175	58.5	0.004	0.00		0.0	0.600	0	100) 💣	
S12.00	3 23.511	0.402	58.5	0.007	0.00		0.0	0.600	0	100) 🚅	
S12.00	4 3.033	0.052	58.5	0.011	0.00		0.0	0.600	0	100) 🥳	
S16.00	0 9.442	0.161	58.5	0.004	1.00		0.0	0.600	0	100) 🚅	
S16.00	1 3.323	0.057	58.5	0.004	0.00		0.0	0.600	0	100) 🥳	
S12.00	5 16.724	0.286	58.5	0.000	0.00		0.0	0.600	0	100) 💣	
S12.00	6 25.636	0.438	58.5	0.000	0.00		0.0	0.600	0	100) 💣	
S1.01	5 19.075	0.113	168.4	0.000	0.00		0.0	0.600	0	225	5 💣	
S1.01	6 3.173	0.019	168.4	0.000	0.00		0.0	0.600	0	225	5 💣	
			Ne	etwork	Result	ts Ta	able					
-							T			- 1	G	-1
PN (1	mm/hr) (r	nins)	(m)	(ha)	гоw (se l/s)	(1/s)	(1/s)	/ (m	/s)	(1/s)	(1/s)
S15.000	50.00	1.09	9.070	0.004		0.0	0.0	0.0	01	.01	7.9	0.6
S15.001	50.00	1.26 8	3.972	0.008		0.0	0.0	0.0	0 1	.01	7.9	1.1
S12.003	50.00	1.80 8	3.434	0.039		0.0	0.0	0.0	0 1	.01	7.9	5.3
S12.004	50.00	1.85 8	3.032	0.050		0.0	0.0	0.0	0 I	.01	7.9	6.8
S16.000	50.00	1.16	9.092	0.004		0.0	0.0	0.0	0 1	.01	7.9	0.6
ST0.001	50.00	1.21 8	5.93⊥	0.008		0.0	0.0	0.0	υL	.01	1.9	1.1
S12.005	50.00	2.13	7.980	0.058		0.0	0.0	0.0	0 1	.01	7.9	7.8
512.000	50.00	2.00	.094	0.058		0.0	0.0	0.0	J	.01	1.9	1.0
S1.015	50.00	3.70	7.131	0.214		0.0	0.0	0.0	01	.00	39.9	29.0
	50.00	3.70	1.01/	0.214		0.0	0.0	0.0	J 1	.00	39.9	29.0

CK21 Consultants		Page 5
1 Mosley Street		
Newcastle Upon Tyne		4
NE1 1YE		Micco
Date 22/12/2016 15:25	Designed by d.webb	
File Salcombe Avenue - Jarro	Checked by	Diamaye
Causeway	Network 2015.1	

Manhole Schedules for Storm

MH Name	MH CL (m)	MH Depth (m)	MH Connection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter (mm)	Backdrop (mm)
S1	12.838	0.700	Open Manhole	450	S1.000	12.138	100				
s2	12.806	0.856	Open Manhole	450	S1.001	11.950	100	s1.000	11.950	100	
S3	12.833	1.026	Open Manhole	450	S1.002	11.807	100	s1.001	11.807	100	
S4	12.691	0.700	Open Manhole	450	S2.000	11.991	100				
S4	12.662	1.080	Open Manhole	450	S1.003	11.581	100	S1.002	11.581	100	
								s2.000	11.808	100	227
S6	12.446	0.700	Open Manhole	450	S3.000	11.746	100				
S5	12.443	0.931	Open Manhole	450	S1.004	11.512	100	S1.003	11.512	100	
								s3.000	11.577	100	65
S8	12.418	0.700	Open Manhole	450	S4.000	11.718	100				
S6	12.243	1.059	Open Manhole	450	S1.005	11.184	100	S1.004	11.184	100	
								S4.000	11.543	100	359
S10	11.846	0.700	Open Manhole	450	\$5.000	11.146	100	a1 005	11 100	1.0.0	150
S/	11.852	0.926	Open Manhole	450	SI.006	10.927	150	SI.005	11.129	100	152
010	11 651	0 700	Onen Manhala	450	ac 000	10 051	100	\$5.000	10.9//	100	
512	11 612	0.700	Open Manhole	450	S0.000	10.951	150	S1 006	10 720	150	
50	11.012	0.002		400	31.007	10.750	100	SE 000	10.730	100	1
S14	11 244	0 700	Open Manhole	450	\$7 000	10 544	100	30.000	10.702	100	1
59	11.242	0.911	Open Manhole	450	\$1.008	10.331	150	\$1,007	10.492	150	161
		0.011		100	01.000	10,001	200	s7.000	10.381	100	
S16	11.200	0.700	Open Manhole	450	S8.000	10.500	100				
S10	11.152	1.019	Open Manhole	450	s1.009	10.134	150	S1.008	10.134	150	
			-					s8.000	10.337	100	154
S18	10.642	0.700	Open Manhole	450	S9.000	9.942	100				
S11	10.613	0.883	Open Manhole	450	S1.010	9.730	150	S1.009	9.863	150	133
								S9.000	9.780	100	
S20	10.193	0.700	Open Manhole	450	S10.000	9.493	100				
S21	10.073	0.739	Open Manhole	450	S10.001	9.335	100	S10.000	9.335	100	
S12	10.398	1.554	Open Manhole		S1.011	8.845	225	S1.010	9.533	150	613
								S10.001	8.970	100	
S21	10.200	0.700	Open Manhole		S11.000	9.500	100				
S13	10.647	1.875	Junction	0	S1.012	8.772	225	S1.011	8.772	225	
								S11.000	9.430	100	533
S14	9.590	0.839	Open Manhole	1200	s1.013	8.751	225	S1.012	8.751	225	
S15	9.100	0.700	Open Manhole	450	S1.014	8.400	225	s1.013	8.700	225	300
S16	9.434	0.700	Open Manhole		\$12.000	8.734	100				
S28	9.779	0.700	Open Manhole	450	S13.000	9.079	100				
				©1982-20	15 XP S	olutions					

CK21 Consultants		Page 6
1 Mosley Street		
Newcastle Upon Tyne		4
NE1 1YE		Micco
Date 22/12/2016 15:25	Designed by d.webb	
File Salcombe Avenue - Jarro	Checked by	Diamaye
Causeway	Network 2015.1	

Manhole Schedules for Storm

MH Name	MH CL (m)	MH Depth (m)	MH Connection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert D Level (m)	iameter (mm)	Backdrop (mm)
S29	9.714	0.807	Open Manhole		s13.001	8.907	100	s13.000	8.907	100	
S28	9.661	1.028	Junction		S12.001	8.633	100	S12.000	8.633	100	
								S13.001	8.853	100	220
S31	9.711	0.700	Open Manhole		S14.000	9.011	100				
S32	9.579	1.047	Junction	0	S12.002	8.532	100	S12.001	8.532	100	
								S14.000	8.879	100	347
S33	9.770	0.700	Open Manhole	450	S15.000	9.070	100				
S34	9.786	0.813	Open Manhole	450	S15.001	8.972	100	s15.000	8.972	100	
S35	9.674	1.240	Open Manhole	450	S12.003	8.434	100	S12.002	8.434	100	
								S15.001	8.798	100	364
S36	9.890	1.858	Open Manhole		S12.004	8.032	100	S12.003	8.032	100	
S37	9.792	0.700	Open Manhole	450	S16.000	9.092	100				
S38	9.791	0.860	Open Manhole		S16.001	8.931	100	S16.000	8.931	100	
S39	9.962	1.982	Junction	0	S12.005	7.980	100	S12.004	7.980	100	
								S16.001	8.874	100	894
S40	9.375	1.681	Open Manhole	1200	S12.006	7.694	100	S12.005	7.694	100	
S41	9.205	2.074	Open Manhole	1200	S1.015	7.131	225	S1.014	8.371	225	1243
								S12.006	7.256	100	
S42	9.500	2.483	Open Manhole	1200	S1.016	7.017	225	S1.015	7.017	225	
S6406	9.913	2.915	Open Manhole	1200		OUTFALL		S1.016	6.999	225	

CK21 Consultar	nts								Page 7
1 Mosley Stree	et								
Newcastle Upor	n Tyn	е							L'
NE1 1YE									Micro
Date 22/12/201	16 15	:25		I	Designed	by d.	webb		
File Salcombe	Aven	ue -	Jarr	o (Checked	by			Dialitage
Causeway				1	Network	2015.1			
			PIPI	ELINE	SCHEDULE	<u>S for</u>	<u>Storm</u>		
				Ups	tream Ma	nhole			
DN	Hyd F)iam N	MH C	Level	T Level D	Denth	мн	MH DTAM	т.*₩
	Sect ((mm) Na	ame	(m)	(m)	(m)	Connection	(mm)	1 N
S1.000 S1.001	0	100	S1 S2	12.838	12.138	0.600	Open Manhole		450
S1.001 S1.002	0	100	S2 S3	12.800	11.807	0.926	Open Manhole		450
							-		
S2.000	0	100	S4	12.691	11.991	0.600	Open Manhole		450
S1.003	0	100	S4	12.662	11.581	0.980	Open Manhole		450
s3.000	0	100	S6	12.446	11.746	0.600	Open Manhole		450
S1.004	0	100	S5	12.443	11.512	0.831	Open Manhole		450
S4.000	0	100	S8	12.418	11.718	0.600	Open Manhole		450
s1.005	0	100	S6	12.243	11.184	0.959	Open Manhole		450
s5.000	0	100 \$	S10	11.846	11.146	0.600	Open Manhole		450
S1.006	0	150	S7	11.852	10.927	0.776	Open Manhole		450
\$6.000	0	100 \$	S12	11.651	10.951	0.600	Open Manhole		450
				Down	stream M	Ianhole	2		
							_		
PN Le	ength : (m)	Slope (1:X)	MH Name	C.Level (m)	L I.Level (m)	D.Depth (m)	n MH Connection	MH DIAM (mm	., L*W I)
S1 000 10),973	58 5	52	12 804	5 11 950	0 750	Open Manhol	٩	450
s1.000 10	3.413	58.5	S3	12.833	3 11.807	0.926	6 Open Manhol	e	450
s1.002 13	3.174	58.5	S4	12.662	2 11.581	0.980) Open Manhol	e	450
S2.000 10	.657	58.5	S4	12.662	2 11.808	0.753	3 Open Manhol	e	450
S1.003 4	1.039	58.5	s5	12.443	3 11.512	0.831	Open Manhol	e	450
s3.000 9	.884	58.5	S5	12.443	3 11.577	0.766	6 Open Manhol	e	450
S1.004 19	0.193	58.5	S6	12.243	3 11.184	0.959	9 Open Manhol	e	450
S4.000 9	.862	56.4	S6	12.243	3 11.543	0.600) Open Manhol	e	450
S1.005 3	8.115	56.4	s7	11.852	2 11.129	0.624	l Open Manhol	e	450
\$5.000 9	.896	58.5	s7	11.852	2 10.977	0.776	6 Open Manhol	e	450

S1.006 19.524 99.3 S8 11.612 10.730 0.732 Open Manhole

S6.000 9.927 58.5 S8 11.612 10.782 0.731 Open Manhole

©1982-2015 XP Solutions

450

450

CK21	Consult	ants							Page 8
1 Mos	sley Str	eet							
Newca	astle Up	on Tyr	ne						L'
NE1 1	LYE								Micro
Date	22/12/2	016 15	5:25			Designe	d by d.	webb	
File	Salcomb	e Aver	nue -	Jar	ro	Checked	by		Diamada
Cause	eway					Network	2015.1		
				PIE	PELINE	SCHEDUL	<u>ES for</u>	<u>Storm</u>	
					Ups	stream M	anhole		
	PN	Hyd	Diam	MH	C.Level	I.Level	D.Depth	MH 1	MH DIAM., L*W
		Sect	(mm)	Name	(m)	(m)	(m)	Connection	(mm)
	S1.00	7 0	150	S8	11.612	10.730	0.732	Open Manhole	450
	S7.00	0 0	100	S14	11.244	10.544	0.600	Open Manhole	450
	S1.00	8 0	150	S9	11.242	10.331	0.761	Open Manhole	450
	S8.00	0 0	100	S16	11.200	10.500	0.600	Open Manhole	450
	S1.00	9 0	150	S10	11.152	10.134	0.869	Open Manhole	450
	S9.00	0 0	100	S18	10.642	9.942	0.600	Open Manhole	450
	S1.01	0 0	150	S11	10.613	9.730	0.733	Open Manhole	450
	S10.00	0 0	100	S20	10.193	9.493	0.600	Open Manhole	450
	S10.00	1 o	100	S21	10.073	9.335	0.639	Open Manhole	450
	S1.01	1 o	225	S12	10.398	8.845	1.329	Open Manhole	1200
	S11.00	0 0	100	S21	10.200	9.500	0.600	Open Manhole	450
					Dowr	stream	Manhole		
	PN	Length	Slope	- мн	C. Leve	l I.Leve	1 D.Depti	n MH	MH DTAM., L+W
		(m)	(1:X)	Name	ə (m)	(m)	(m)	Connection	(mm)
	S1.007	5.268	22.1	S	9 11.24	12 10.49	2 0.600) Open Manhole	450
	s7.000	9.576	58.5	i s	9 11.24	12 10.38	1 0.763	l Open Manhole	450
	S1.008	19.540	99.2	2 S1(0 11.15	52 10.13	4 0.869	9 Open Manhole	450
	S8.000	9.519	58.5	5 S1(0 11.15	52 10.33	7 0.71	5 Open Manhole	450
	S1.009	1.890	7.0) S11	1 10.61	.3 9.86	3 0.600) Open Manhole	450
	S9.000	9.454	58.5	5 S11	1 10.61	.3 9.78	0 0.733	3 Open Manhole	450
	S1.010	19.547	99.0) S12	2 10.39	9.53	3 0.715	5 Open Manhole	1200
	S10.000	9.236	58.5	5 S2:	1 10.07	9.33	5 0.639	9 Open Manhole	450
	S10.001	21.354	58.5	5 S12	2 10.39	8.97	0 1.329	9 Open Manhole	1200
	S1.011	10.912	150.0) S1:	3 10.64	17 8.77	2 1.650) Junction	

S11.000 3.440 48.8 S13 10.647 9.430 1.117 Junction

CK21 Consulta	ants							Page 9
Mosley Stre	eet							
ewcastle Upo	on Tyr	ne						4
NE1 1YE								Micco
Date 22/12/20)16 15	5:25		1	Designed	l by d.	webb	
File Salcombe	e Aver	nue -	Jarı		Checked	by		
Causeway				1	Network	2015.1		
			PTE	FITNE	SCHEDIILE	rs for	Storm	
			<u>1 1 1</u>		SCHEDUEL	<u>10 101</u>	SCOTI	
				<u>Ups</u>	tream Ma	<u>anhole</u>		
PN	Hyd	Diam	МН	C.Level	I.Level	D.Depth	MH	MH DIAM., L*W
	Sect	(mm) 1	Name	(m)	(m)	(m)	Connection	(mm)
S1.012	0	225	S13	10.647	8.772	1,650	Junction	
s1.013	0	225	S14	9.590	8.751	0.614	Open Manhole	1200
S1.014	0	225	S15	9.100	8.400	0.475	Open Manhole	450
S12.000	0	100	S16	9.434	8.734	0.600	Open Manhole	450
S13.000	0	100	S28	9.779	9.079	0.600	Open Manhole	450
S13.001	0	100	S29	9.714	8.907	0.707	Open Manhole	450
S12.001	0	100	S28	9.661	8.633	0.928	Junction	
S14.000	0	100	S31	9.711	9.011	0.600	Open Manhole	450
S12.002	0	100	S32	9.579	8.532	0.947	Junction	
S15.000	0	100	S33	9.770	9.070	0.600	Open Manhole	450
S15.001	0	100	S34	9.786	8.972	0.713	Open Manhole	450
S12.003	0	100	S35	9.674	8.434	1.140	Open Manhole	450
S12.004	0	100	S36	9.890	8.032	1.758	Open Manhole	450
				<u>Down</u>	stream N	Manhole		
PN	Length	Slope	e MH	C.Leve	l I.Level	D.Deptl	h MH	MH DIAM., L*W
	(m)	(1:X)	Name	e (m)	(m)	(m)	Connection	(mm)
S1.012	3.168	150.0) S14	9.59	0 8.751	0.61	4 Open Manhol	e 1200
S1.013	6.685	131.1	. s15	9.10	0 8.700	0.17	5 Open Manhol	e 450

S1.012 S1.013	3.168	150.0 131.1	S14 S15	9.590 9.100	8.751 8.700	0.614	Open Manhole Open Manhole	1200 450	
SI.014	4.851	168.4	S41	9.205	8.3/1	0.609	Open Mannole	1200	
S12.000	5.925	58.5	S28	9.661	8.633	0.928	Junction		
S13.000	10.069	58.5	S29	9.714	8.907	0.707	Open Manhole	450	
S13.001	3.184	58.5	S28	9.661	8.853	0.709	Junction		
S12.001	5.925	58.5	S32	9.579	8.532	0.947	Junction		
S14.000	2.525	19.2	S32	9.579	8.879	0.600	Junction		
S12.002	5.739	58.7	S35	9.674	8.434	1.140	Open Manhole	450	
S15.000	5.694	58.5	S34	9.786	8.972	0.713	Open Manhole	450	
S15.001	10.212	58.5	S35	9.674	8.798	0.776	Open Manhole	450	
S12.003	23.511	58.5	S36	9.890	8.032	1.758	Open Manhole	450	
S12.004	3.033	58.5	S39	9.962	7.980	1.882	Junction		
			©1	982-201	5 XP Sc	lution	ns		

CK21 Consultants		Page 10
1 Mosley Street		
Newcastle Upon Tyne		4
NE1 1YE		Micco
Date 22/12/2016 15:25	Designed by d.webb	
File Salcombe Avenue - Jarro	Checked by	Dialitaye
Causeway	Network 2015.1	

PIPELINE SCHEDULES for Storm

<u>Upstream Manhole</u>

PN	Hyd	Diam	MH	C.Level	I.Level	D.Depth	MH	MH DIAM., L*W
	Sect	(mm)	Name	(m)	(m)	(m)	Connection	(mm)
S16.000	0	100	S37	9.792	<mark>9.092</mark>	0.600	Open Manhole	450
S16.001		100	S38	9.791	8.931	0.760	Open Manhole	450
S12.005 S12.006	0	100 100	S39 S40	9.962 9.375	7.980 7.694	1.882 1.581	Junction Open Manhole	1200
S1.015	0	225	S41	9.205	7.131	1.849	Open Manhole	1200
S1.016		225	S42	9.500	7.017	2.258	Open Manhole	1200

Downstream Manhole

PN	Length	Slope	MH	C.Level	I.Level	D.Depth	MH	MH DIAM., L*W
	(m)	(1:X)	Name	(m)	(m)	(m)	Connection	(mm)
S16.000	9.442	58.5	S38	9.791	8.931	0.760	Open Manhole	450
S16.001	3.323	58.5	S39	9.962	8.874	0.988	Junction	
S12.005	16.724	58.5	S40	9.375	7.694	1.581	Open Manhole	1200
S12.006	25.636	58.5	S41	9.205	7.256	1.849	Open Manhole	1200
S1.015	19.075	168.4	S42	9.500	7.017	2.258	Open Manhole	1200
S1.016	3.173	168.4	S6406	9.913	6.999	2.690	Open Manhole	1200

CK21 Consultants					
1 Mosley Street					
Newcastle Upon Tyne		<u> </u>			
NE1 1YE		Micco			
Date 22/12/2016 15:25	Designed by d.webb				
File Salcombe Avenue - Jarro	Checked by	Diamaye			
Causeway	Network 2015.1	1			

Area Summary for Storm

Pipe	PIMP	PIMP	PIMP	Gross	Imp.	Pipe Total
Number	Туре	Name	(%)	Area (ha)	Area (ha)	(ha)
1 000			100	0 004	0 004	0 004
1.000	User	-	100	0.004	0.004	0.004
1.001	User	-	100	0.004	0.004	0.004
1.002	User	-	100	0.008	0.008	0.008
2.000	User	-	100	0.005	0.005	0.005
1.003	User	-	100	0.011	0.011	0.011
3.000	User	-	100	0.004	0.004	0.004
1.004	User	-	100	0.004	0.004	0.004
4 000	User	-	100	0.004	0.004	0.007
4.000	User	-	100	0.004	0.004	0.004
1.005	User	-	100	0.008	0.008	0.008
5.000	User	-	100	0.004	0.004	0.004
1.006	User	-	100	0.009	0.009	0.009
6.000	User	-	100	0.004	0.004	0.004
1.007	User	-	100	0.008	0.008	0.008
7.000	User	-	100	0.004	0.004	0.004
1.008	User	-	100	0.008	0.008	0.008
8.000	User	-	100	0.004	0.004	0.004
1.009	User	-	100	0.008	0.008	0.008
9.000	User	-	100	0.004	0.004	0.004
1.010	User	-	100	0.008	0.008	0.008
10.000	User	-	100	0.004	0.004	0.004
10.001	User	-	100	0.008	0.008	0.008
1.011	User	-	100	0.009	0.009	0.009
	User	-	100	0.008	0.008	0.016
11.000	User	-	100	0.004	0.004	0.004
1.012	User	-	100	0.004	0.004	0.004
1.013	-	-	100	0.000	0.000	0.000
1.014	-	-	100	0.000	0.000	0.000
12.000	User	-	100	0.017	0.017	0.017
13.000	User	-	100	0.002	0.002	0.002
13.001	User	-	100	0.003	0.003	0.003
12.001	-	-	100	0.000	0.000	0.000
14.000	User	-	100	0.001	0.001	0.001
12.002	-	-	100	0.000	0.000	0.000
15.000	User	-	100	0.004	0.004	0.004
15.001	User	-	100	0.004	0.004	0.004
12.003	User	-	100	0.003	0.003	0.003
	User	-	100	0.004	0.004	0.007
12.004	User	-	100	0.006	0.006	0.006
	User	-	100	0.004	0.004	0.011
16.000	User	-	100	0.004	0.004	0.004
16.001	User	-	100	0.004	0.004	0.004
12.005	-	-	100	0.000	0.000	0.000
12.006	-	-	100	0.000	0.000	0.000
1.015	-	-	100	0.000	0.000	0.000
1.016	-	-	100	0.000	0.000	0.000
				Total	Total	Total
				0.214	0.214	0.214

CK21 Consultants		Page 12
1 Mosley Street		
Newcastle Upon Tyne		
NE1 1YE		— Mirro
Date 22/12/2016 15:25	Designed by d.webb	Drainage
File Salcombe Avenue - Jarro	Checked by	Brainacje
Causeway	Network 2015.1	
Free Flowing	Outfall Details for Storm	
Outfall Outfall C Pipe Number Name	. Level I. Level Min D,L W (m) (m) I. Level (mm) (mm (m)	.)
S1.016 S6406	9.913 6.999 0.000 1200	0
Simulatic	on Criteria for Storm	
Volumetric Runoff Coeff (Areal Reduction Factor 1 Hot Start (mins) Hot Start Level (mm) Manhole Headloss Coeff (Global) (Foul Sewage per hectare (1/s) (Number of Input Hydrogr Number of Online Cont. Number of Offline Cont.	0.840 Additional Flow - % of Tota MADD Factor * 10m ³ /ha S 0 Inlet Coeffi 0 Flow per Person per Day (1/pe 0.500 Run Time 0.000 Output Interval aphs 0 Number of Storage Structures rols 1 Number of Time/Area Diagrams rols 0 Number of Real Time Controls	al Flow 0.000 Storage 2.000 Lecient 0.800 er/day) 0.000 (mins) 60 (mins) 1 s 1 s 0 s 0
Synthet	ic Rainfall Details	
bynenee	<u>ie Raimaii Decarib</u>	
Return Period (years) Region Engla M5-60 (mm) Ratio R	1 Cv (Summer) nd and Wales Cv (Winter) 17.100 Storm Duration (mins) 0.346	0.750 0.840 15
©1982-	-2015 XP Solutions	

CK21 Consultants						Page 13
1 Mosley Street						
Newcastle Upon Tyne						
NE1 1YE						Micro
Date 22/12/2016 15:25]	Designed	by d.webb			
File Salcombe Avenue - Ja	arro (Checked b	ру			Diamade
Causeway	1	Network 2	2015.1			
	<u>Online (</u>	Controls	for Storm		()	
Hydro-Brake Optimum®	<u>Manhole</u>	: S42, D	S/PN: SI.U.	<u>l6, Volu</u>	<u>me (m³</u>): 3.5
Minimum Outlet Suggested Mar	Unit : Design F F Diam Invert : Pipe Diam	Reference Head (m) low (l/s) lush-Flo™ Objective eter (mm) Level (m) eter (mm)	MD-SHE-0090- Minimise up	5000-2100 Calcu stream st	-5000 2.100 5.0 llated orage 90 7.017 150 1200	
Co	ontrol Poir	nts 1	Head (m) Flow	w (l/s)		
Design Mean Fl The hydrological calculation Hydro-Brake Optimum® as spec Hydro-Brake Optimum® be util invalidated	Point (Cal Fl K ow over He ns have be cified. S lised then	culated) ush-Flo™ tick-Flo® ad Range en based c hould anot these sto	2.100 0.397 0.808 - on the Head/D her type of rage routing	5.0 4.0 3.2 3.9 ischarge control d calculat	relatio evice o ions wi	nship for the ther than a ll be
Depth (m) Flow (1/s) Depth	(m) Flow	(1/s) Dep	th (m) Flow	(1/s) Dep	th (m)	Flow (l/s)
0.100 2.8 1 0.200 3.7 1 0.300 4.0 1 0.400 4.0 1 0.500 4.0 2 0.600 3.9 2 0.800 3.3 2 1.000 3.5 2	.200 .400 .600 .800 .000 .200 .400 .600	3.8 4.1 4.4 4.6 4.9 5.1 5.3 5.5	3.000 3.500 4.000 4.500 5.000 5.500 6.000 6.500	5.9 6.3 6.8 7.1 7.5 7.8 8.2 8.5	7.000 7.500 8.000 8.500 9.000 9.500	8.8 9.1 9.4 9.6 9.9 10.2
	©1982-2	2015 XP S	Solutions			

CK21 Consultants		Page 14
1 Mosley Street		
Newcastle Upon Tyne		<u> </u>
NE1 1YE		Micco
Date 22/12/2016 15:25	Designed by d.webb	
File Salcombe Avenue - Jarro	Checked by	Dialitada
Causeway	Network 2015.1	

Storage Structures for Storm

Tank or Pond Manhole: S15, DS/PN: S1.014

Invert Level (m) 8.400

Depth (m) Area (m²) Depth (m) Area (m²) Depth (m) Area (m²)

0.000	64.2	0.300	120.1	0.600	157.5
0.100	97.8	0.400	132.0	0.700	171.1
0.200	108.6	0.500	144.5	0.701	171.3

CK21 Con	sultar	nts					Page 15
1 Mosley	Stree	et					
Newcastl	e Upor	n Tyne					4
NE1 1YE							Micro
Date 22/	12/201	6 15:25		De	signed by d.	.webb	Dcainago
File Sal	combe	Avenue -	Jarro.	Ch	ecked by		Dialitage
Causeway				Ne	twork 2015.1	L	
<u>1 year</u>	Return	Period	Summary	of Cr	itical Resul	lts by Maxim	um Level (Rank 1)
			-	<u>f</u> c	or Storm	-	
				Cimula	tion Critoria		
	Ar	eal Reduct	ion Fact	or 1.00	0 Additional	l Flow - % of 1	Total Flow 0.000
		Hot St	art (min	ıs)	0 MADD 1	Factor * 10m³/h	na Storage 2.000
Manh		Hot Start	Level (m	m)	0 Flow por Por	Inlet Coe	effiecient 0.800
Fo	ul Sewa	ige per hec	tare (1/	's) 0.00	0 FIOW PET PE.	rson per bay (1	1/per/day) 0.000
	Nı	umber of I	nput Hydi	rographs	s 0 Number of	Storage Struct	ures 1 rams 0
	1	Number of	Offline (Controls	3 0 Number of	Real Time Cont	rols 0
		Painfa	<u>Sy</u> 11 Model	nthetic	Rainfall Deta	<u>ils</u> Patio R 0 34	5
		Naillia	Region	England	d and Wales Cv	(Summer) 0.75	0
		M5	-60 (mm)		17.200 Cv	(Winter) 0.84	0
	N	largin for	Flood Bi	sk Warn	ing (mm) 300 (IS OFF
	1.	argin ioi	An	alysis	Timestep Fine	e Inertia Statu	is ON
				DT	S Status Ol	N	
		Pr	ofile(s)			Summer	and Winter
	Detum	Duration(s) (mins)	15, 30	, 60, 120, 180	, 240, 360, 48	0, 600, 720
	Recurn	Climate Ch	(years) ange (%)				0, 0, 40
			<u> </u>				
	US/MH		Return C	Climate	First (X)	First (Y)	First (Z) Overflow
PN	Name	Storm	Period	Change	Surcharge	Flood	Overflow Act.
S1.000	S1	15 Summer	1	+0%	100/15 Summer		
S1.001	S2	15 Summer	1	+0%	30/15 Summer		
S1.002	S3	15 Summer	1	+0%	30/15 Summer		
S2.000	54 54	15 Summer	1	+0종 +0%	30/15 Summer	100/15 Summer	
s3.000	S 4	15 Summer	1	+0%	30/15 Summer	100/15 Summer	
S1.004	S5	15 Summer	1	+0%	30/15 Summer	100/15 Winter	
S4.000	S8	15 Summer	1	+0%	100/15 Summer		
S1.005	S6	15 Summer	1	+0%	30/15 Summer		
\$5.000	S10	15 Summer	1	+0%	100/15 Summer		
S1.006	S7	15 Summer	1	+0%	100/15 Summer		
S6.000	512 co	15 Summer	⊥ 1	+U% ⊥∩⊆	100/15 Summer		
S7.000	50 S14	15 Summer	⊥ 1	+0%	30/15 Summer	100/15 Summer	
S1.008	S9	15 Summer	1	+0%	30/15 Summer		
S8.000	S16	15 Summer	1	+0%	100/15 Summer		
S1.009	S10	15 Winter	1	+0%	30/15 Summer		
S9.000	S18	15 Summer	1	+0%	30/15 Summer		
S1.010	S11	15 Winter	1	+0%	30/15 Summer		
S10.000	\$20	15 Summer	1	+0% +0%	100/15 Summer		
510.001	521	10 Summer	1	+U3	100/15 Summer		
			©19	982-201	15 XP Soluti	ons	

CK21 Consultants		Page 16
1 Mosley Street		
Newcastle Upon Tyne		4
NE1 1YE		Micco
Date 22/12/2016 15:25	Designed by d.webb	
File Salcombe Avenue - Jarro	Checked by	Diginarie
Causeway	Network 2015.1	

<u>1 year Return Period Summary of Critical Results by Maximum Level (Rank 1)</u> <u>for Storm</u>

	US/MH	Water Level	Surcharged Depth	Flooded Volume	Flow /	Overflow	Pipe Flow		Level
PN	Name	(m)	(m)	(m ³)	Cap.	(1/s)	(1/s)	Status	Exceeded
S1.000	S1	12.160	-0.078	0.000	0.10		0.8	OK	
S1.001	S2	11.977	-0.074	0.000	0.14		1.0	OK	
S1.002	s3	11.839	-0.068	0.000	0.23		1.7	OK	
S2.000	S4	12.013	-0.077	0.000	0.11		0.8	OK	
S1.003	S4	11.631	-0.050	0.000	0.50		3.4	OK	2
S3.000	S6	11.768	-0.078	0.000	0.10		0.7	OK	4
S1.004	S5	11.568	-0.044	0.000	0.60		4.5	OK	1
S4.000	S8	11.739	-0.078	0.000	0.10		0.7	OK	
S1.005	S6	11.257	-0.027	0.000	0.88		5.8	OK	
S5.000	S10	11.168	-0.078	0.000	0.10		0.7	OK	
S1.006	s7	10.995	-0.082	0.000	0.41		6.9	OK	
S6.000	S12	10.973	-0.078	0.000	0.10		0.7	OK	
S1.007	S8	10.783	-0.097	0.000	0.27		8.1	OK	
S7.000	S14	10.566	-0.078	0.000	0.10		0.7	OK	2
S1.008	S9	10.412	-0.069	0.000	0.56		9.3	OK	
S8.000	S16	10.522	-0.078	0.000	0.10		0.7	OK	
S1.009	S10	10.192	-0.091	0.000	0.32		10.5	OK	
S9.000	S18	9.964	-0.078	0.000	0.10		0.7	OK	
S1.010	S11	9.824	-0.057	0.000	0.69		11.6	OK	
S10.000	S20	9.515	-0.078	0.000	0.10		0.7	OK	
S10.001	S21	9.364	-0.071	0.000	0.18		1.4	OK	

CK21 Cons	ultant	s								Page 17
1 Moslev	Street									
Newcastle	Ilnon	Tuno								4
NEWCASCIE	opon	тупе								m m
NEI IYE										Mirro
Date 22/1	2/2016	5 15:25		De	signed	l by	d.webb			Dcainago
File Salc	ombe A	avenue	- Jarro	. Ch	ecked	by				Diamaye
Causeway				Ne	twork	2015	5.1			
1 vear Re	eturn	Period	Summarv	of Cr	itical	Re	sults b	v Ma	ximum Leve	l (Rank 1)
<u>- jour n</u>	004211	101104	b anima 1	<u>f</u>	or Sto	rm	04100 10	<u></u>		<u> (nom 1)</u>
					02 000					
υ	S/MH		Return Cl	imate	First	(X)	Fir	st (Y) First (Z) Overflow
PN N	lame	Storm	Period Ch	ange	Surch	arge	E	lood	Overfl	ow Act.
01 011	010 15	Winton	1	1.0.0	20/15	C	~ ~			
S1.011 S11 000	SIZ IS 921 15	5 Summer	1	+03 +02	30/15	Summ	er			
S1 012	S13 15	5 Winter	1	+0%	30/15	Summe	er			
S1.013	S14 15	Winter	1	+0%	30/15	Summ	er			
S1.014	s15 30) Winter	1	+0%	30/30	Winte	er			
S12.000	S16 15	5 Summer	1	+0%	30/15	Summ	er 100/	15 Su	nmer	
S13.000	S28 15	5 Summer	1	+0%	100/15	Summ	er			
S13.001	S29 15	5 Summer	1	+0%	100/15	Summ	er			
S12.001	S28 15	5 Summer	1	+0%	30/15	Summ	er			
S14.000	S31 15	5 Summer	1	+0%	100/15	Summ	er			
S12.002	S32 15	5 Summer	1	+0%	30/15	Summ	er			
S15.000	S33 15	5 Summer	1	+0%	100/15	Summ	er			
S15.001	S34 15	5 Summer	1	+0%	100/15	Summ	er			
S12.003	S35 15	5 Summer	1	+0%	30/15	Summ	er			
S12.004	S36 60) Winter	1	+0%	1/30	Summ	er			
S16.000	S3/ 15	Summer	1	+0%	100/15	Wint	er			
S10.001 S12 005	230 LC) Winter	1	+03 +02	1/30	Summ	er			
S12.005	S40 60) Winter	1	+0%	1/15	Summ	or			
S1.015	S41 60) Winter	1	+0%	1/15	Summe	er 100/1	20 Wi	nter	
S1.016	S42 60) Winter	1	+0%	1/15	Summe	er 100/1	80 Su	nmer	
					_					
		Water :	Surcharged	Flood	ed		c 1	Pipe		
DN	US/MH	Tever	Deptn (m)	VOLUN (m ³)	le FIOW	/ 0	veriiow	FIOW	Status	Level
EN	Name	(111)	(111)	(111)	Cap	•	(1/5)	(1/5)	Status	Exceeded
S1.011	S12	8.945	-0.125	0.0	00 0.	40		14.5	OF	ζ
S11.000	S21	9.522	-0.078	0.0	00 0.	10		0.8	OF	ζ
S1.012	S13	8.887	-0.110	0.0	00 0.	51		15.3	OK*	-
S1.013	S14	8.860	-0.116	0.0	00 0.	48		15.3	OF	C
S1.014	S15	8.475	-0.150	0.0	00 0.	25		7.1	OF	C
S12.000	S16	8.782	-0.053	0.0	00 0.	42		2.9	OF	K 10
\$13.000	S28	9.094	-0.085	0.0	00 0.	05		0.4	OF	(-
SI3.001	S29	8.928	-0.079	0.0	00 0.	12		0.6	OF	
S12.001	528	8.683	-0.050	0.0	00 0.	43		3.4	OK ^	•
S14.000	S31 S32	8 582	-0.050	0.0	00 0. 00 0	48		38	OK *	r.
\$15.000	S33	9.092	-0.078	0.0	00 N	10		0.7	OK	ζ
S15.001	s34	8.998	-0.075	0.0	00 0.	13		1.0	01 01	ζ
S12.003	S35	8.493	-0.041	0.0	00 0.	67		5.1	OF	C
S12.004	S36	8.470	0.339	0.0	00 0.	48		3.0	SURCHARGEI)
S16.000	S37	9.114	-0.078	0.0	00 0.	10		0.7	OF	ζ.
S16.001	S38	8.958	-0.073	0.0	00 0.	15		1.0	OF	C
S12.005	S39	8.468	0.388	0.0	00 0.	44		3.5	SURCHARGED*	r.
S12.006	S40	8.461	0.667	0.0	00 0.	46		3.5	SURCHARGEI) _
S1.015	S41	8.453	1.097	0.0	UU 0.	⊥/ 1.C		6.2	SURCHARGEI	v 7
51.010	542	0.444	1.202	0.0	υυ υ.	ц		4.2	SUKCHARGEL) /

©1982-2015 XP Solutions

1 Mosley Street. Newcastle Opon Tyne New 1 172 Date 22/12/2016 15:25 Pesigned by d.webb File Salcombe Avenue - Jarro Checked by Causeway Network 2015.1 30 year Return Period Summary of Critical Results by Maximum Level (Rank 1) <u>for Storm</u> Simulation Criteria Areal Reduction Factor 1.000 Not Start (mins) 0 MADD Factor - % of Total Flow 0.000 Not Start is 0 0 MADD Factor - 10m ² /hs Storage 2.000 Hot Start is 0 0 MADD Factor - 10m ² /hs Storage 2.000 Hot Start is 0 0 MADD Factor - 10m ² /hs Storage 2.000 Number of Input Hydrographs 0 Number of Storage Bructures 1 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Online Controls 1 Number of Storage Bructures 1 Number of Online Controls 1 Number of Storage Bructures 1 Number of Online Controls 1 Number of Storage Bructures 1 Number of Online Controls 1 Number of Storage Bructures 1 Number of Online Controls 1 Number of Storage Bructures 1 Number of Online Controls 1 Number of Storage Bructures 1 Number of Online Controls 1 Number of Storage Bructures 1 Number of Online Controls 1 Number of Storage Dructures 1 Number of Online Controls 1 Number of Storage Dructures 1 Number of Online Controls 1 Number of Storage Bructures 1 Number of Online Controls 1 Number of Storage Bructures 1 Number of Uptice Paint 100, 0 DES Status 0N Profile(s) DES Status 0N Profile(s) DES Status 0N Profile(s) DES Status 0N Profile(s) DES Status 0N Profile(s) Summer and Winter S1.000 S1 15 Summer 30 -0% 100/15 Summer S1.000 S1 15 Summer 30 -0% 30/15 Summer S1.000 S1 15 Summ	CK21 Consultants		Page 18
Newcastle Upon Tyne Nii 1yn Date 22/12/2016 15:25 File Salcombe Avenue - Jarro Gauseway Network 2015.1 30 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Storm Simulation Criteria Areal Reduction Factor 1.000 Additional Flow - V of Total Flow 0.000 Not Start (wins) 0 MAND Factor + 10m ² /hs Storage 2.000 Not Start Level (m) 0 That Coefficient 2.000 Not Start Level (m) 0 That Coefficient 2.000 Nomber of Input Hydrographs 0 Number of Storage Structures 1 Number of Offline Controls 0 Number of Storage Structures 1 Number of Offline Controls 0 Number of Real Flow 0.030 Keysen Start Reduction Storage Structures 1 Number of Offline Controls 0 Number of Storage Structures 1 Number of Offline Controls 0 Number of Storage Structures 1 Number of Offline Controls 0 Number of Storage Structures 1 Number of Offline Controls 0 Number of Storage Structures 1 Number of Offline Controls 0 Number of Storage Structures 1 Number of Offline Controls 0 Number of Number 0.750 MS-60 (m) 17.200 CV (Winter) 0.840 Nargin for Flood Risk Narning (mm) 300.0 DVD Status OFF Analysis Timestep Fine Institus ON DT3 Status CN Frofile(s) (stars) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720 Return Period(s) (years) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720 Return Period(s) (wars) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720 Return Period Change Surcharge Flood Overflow Act. S1.001 S1 15 Summer 38 +00 100/15 Summer S1.001 S2 15 Winter 30 +00 30/15 Summer S1.001 S2 15 Winter 30 +00 30/15 Summer S1.001 S2 15 Winter 30 +00 30/15 Summer S1.003 S4 15 Winter 30 +00 30/15 Summer S1.004 S5 15 Ninter 30 +00 30/15 Summer S1.005 S6 15 Winter 30 +00 30/15 Summer S1.004 S5 15 Ninter 30 +00 30/15 Summer S1.005 S6 15 Winter 30 +00 30/15 Summer S1.006 S7 15 Winter 30 +00 30/15 Summer S1.007 S8 15 Winter 30 +00 30/15 Summer S1.008 S9 15 Winter 30 +00 30/15 Summer S1.001 S1 Sinter 30 +00 30/15 Summer S1.001 S1	1 Mosley Street		
NEL 1YE Date 22/12/2016 15:25 File Salcombe Avenue - Jarro Designed by d.webb Causeway Network 2015.1 30 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Storm Simulation Criteria Areal Reduction Factor 1.000 Additional Flow - & of Total Flow 0.000 Hot Start Level (rm) 0 NADD Factor * 10m ³ /hs Storage 2.000 Hot Start Level (rm) 0 The Criteria Store of The Criteria Designed Biology of Total Flow 0.000 Hot Start Level (rm) 0 The Criteria Designed Biology of Total Flow 0.000 Hot Start Level (rm) 0 The Criteria Designed Biology of Total Flow 0.000 Hot Start Level (rm) 0 The Criteria Designed Designed Biology of Total Flow 0.000 Hot Start Level (rm) 0 The Criteria Designed Designed Biology of Total Flow 0.000 Number of Input Fydrographs 0 Number of Starge Structures 1 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Online Controls 1 Number of Starge Structures 1 Number of Online Controls 1 Number of Starge Structures 1 Number of Online Controls 1 Number of Starge Structures 1 Number of Doule Controls 1 Number of Starge Structures 1 Number of Doule Controls 1 Number of Starge Structures 0 Number of Online Controls 1 Number of Starge Structures 0 Number of Input Fydrographs 0 Number of Starge Structures 0 Number of Input Status ON Number of Input Starge Starge Starge Starge ON Number of Starge Starge Starge Starge ON Number of Starge Starge Starge Starge Starge ON Number of Starge Star	Newcastle Upon Tyne		4
Date 22/12/2016 15:25 Pile Salcombe Avenue - Jarro Checked by Causeway Network 2015.1 30 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Storm Simulation Criteria Areal Reduct Tractor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start Serve 1.000 Additional Flow - % of Total Flow 0.000 Hot Start Serve 1.000 Additional Flow - % of Total Flow 0.000 Hot Start Serve 1.000 Additional Flow - % of Total Flow 0.000 Foul Sevage per hectare (1/s) 0.500 Flow per Person per Day (1/per/day) 0.000 Foul Sevage per hectare (1/s) 0.500 Flow per Ferson per Day (1/per/day) 0.000 Number of Input Hydrographs 0 Number of Tise/Area Diagrams 0 Number of Online Controls 1 Number of Tise/Area Diagrams 0 Number of Online Controls 1 Number of Tise/Area Diagrams 0 Number of Online Controls 1 Number of Tise/Area Diagrams 0 Number of Online Controls 1 Number of Tise/Area Diagrams 0 Number of Online Controls 1 Number of Tise/Area Diagrams 0 Number of Online Controls 1 Number of Tise/Area Diagrams 0 Number of Online Controls 1 Number of Tise/Area Diagrams 0 Number of Online Controls 1 Number of Tise/Area Diagrams 0 Number of Online Controls 1 Number of Tise/Area Diagrams 0 Number of Input Hydrographs 0 Number of Tise/Area Diagrams 0 Number of Input Hydrographs 0 Number of Tise/Area Diagrams 0 Number of Input Hydrographs 0 Number of Tise/Area Diagrams 0 Number of Stars 0 Number of Stars 0 Number of Stars 0 Number of Profile(8) Summer and Winter Duration(9) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720 Return Period(1) (years) Climate Change (8) Summer 100, 480, 600, 720 Return Period Change Summer Stars 31 50 Summer 30 + 60% 100/15 Summer Stars 31 Summer 30 + 60% 100/15 Summer Stars 31 Sinter 30 + 60% 100/15 Summer Stars 31 Sinter 30 + 60% 100/15 Summer Stars 31 Sinter 30 + 60% 100/15 Summer	NE1 1YE		
<pre>File Salcombe Avenue - Jarrc [Checked by</pre>	Date 22/12/2016 15:25	Designed by d.webb	Drainage
20 year Return Period Summary of Critical Results by Maximum Level (Rank I) for Storm 30 year Return Period Summary of Critical Results by Maximum Level (Rank I) for Storm Simulation Criteria Areal Reduction Pactor 1.000 Additional Flow - % of Total Flow 0.000 Bot Start (min) 0 MADD Pactor * 10m*/ha Storage 2.000 Exit Eadlos Coeff (Global) 0.500 Flow per Person per Buy (L/per/day) 0.000 Foul Sewage per hectare (1/a) 0.000 Number of Input Hydrographs 0 Number of Storage Structures 1 Rumber of Ofiline Controls 1 Number of Time/Area Diagrams 0 Number of Ofiline Controls 0 Number of Real Time Controls 0 Number of Ofiline Controls 0 Number of Real Time Controls 0 Number of Offline Controls 0 Number of Real Time Controls 0 Number of Offline Controls 0 Number of Real Time Controls 0 Number of Offline Controls 0 Number of Real Time Controls 0 Number of Offline Controls 0 Number of Real Time Controls 0 Number of Offline Controls 0 Number of Region England and Wales CV (Summer) 0.840 Margin for Flood Risk Warning (mm) 300.0 DVD Status OFF Analysis Timestep Fine Inertis Status ON DTS Status ON Profile(s) Summer and Winter Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720 Return Period(s) (years) 1.000 Si 15 Summer 30 +08 30/15 Summer Storm Period Change Surcharge Flood Overflow Act. S1.001 Si 15 Summer 30 +08 30/15 Summer S1.003 Sq 15 Winter 30 20.002 Si 15 Summer 30 +08 30/15 Summer S1.004 S5 15 Winter 30 31.003 Sq 15 Summer 30 +08 30/15 Summer S1.004 S5 15 Winter 30 32.005 Si 15 Summer 30 +08 30/15 Summer S1.004 S5 15 Winter 30 <	File Salcombe Avenue - Jarro	Checked by	Brainage
30 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Storm Simulation Criteria Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (min) 0 MADD Factor * 10m ² /hot Storage 2.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Number of Stort (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Fol Sewage per hectare (1/a) 0.000 Number of Input Hydrographs 0 Number of Storage Structures 1 Number of Offline Controls 0 Number of Ratio R 0.345 Region England and Wells CV (Summer) 0.750 M5-60 (mm) 17.200 CV (Winter) 0.840 Margin for Flood Risk Warning (mm) 300.0 UVD Status OFF Analysis Timestep Fline Inrici Status ON DTS Status ON Frofile(s) Summer and Winter Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 460, 600, 720 Return Period Change Surcharge Flood Overflow Act. Silonol S1 15 Summer 30 + 0% 100/15 Summer 31.001 S2 15 Winter 30 + 0% 30/15 Summer 31.001 S2 15 Winter 30 + 0% 30/15 Summer 31.002 S1 15 Summer 30 + 0% 30/15 Summer 31.003 S1 15 Summer 30 + 0% 30/15 Summer 31.004 S1 15 Summer 30 + 0% 30/15 Summer 31.005 S1 15 Winter 30 + 0% 30/15 Summer 31.006 S1 15 Summer 30 + 0% 30/15 Summer 31.001 S2 15 Winter 30 + 0% 30/15 Summer 31.002 S1 15 Summer 30 + 0% 30/15 Summer 31.003 S1 15 Summer 30 + 0% 30/15 Summer 31.004 S1 15 Summer 30 + 0% 30/15 Summer 31.005 S1 15 Summer 30 + 0% 30/15 Summer 31.006 S1 15 Summer 30 + 0% 30/15 Summer 31.006 S1 15 Summer 30 + 0% 30/15 Summer 31.006 S1 15 Summer 30 + 0% 30/15 Summer 31.007 S8 15 Minter 30 + 0% 30/15 Summer 31.006 S1 15 Summer 30 + 0% 30/15 Summer 31.006 S1 15 Summer 30 + 0% 30/15 Summer 31.007 S8 15 Minter 30 + 0% 30/15 Summer 31.008 S1 15 Summer 30 + 0% 30/15 Summer 31.006 S1 15 Summer 30 + 0% 30/15 Summer 31.007 S8 15 Minter 30 + 0% 30/15 Summer 31.008 S1 15 Kinter 30 + 0% 30/15 Summer 31.008 S1 15 Kinter 30 + 0% 30/15 Summer 31.008 S1 15 Ki	Causeway	Network 2015.1	
Simulation Criteria Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mm) 0 MADD Factor * 10m*/ha Storage 2.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Foul Sewage per hectare (1%) 0.000 Number of Input Hydrographs 0 Number of Storage Structures 1 Number of Offline Controls 0 Number of Real Time Controls 0 Number of Offline Controls 0 Number of Real Time Controls 0 Synthetic Rainfall Details Rainfall Model FSR Ratio R 0.345 Region England and Wales Cv (Summer) 0.750 M5-60 (mm) Margin for Flood Risk Warning (mm) 300.0 DU Status ON DTS Status ON Profile(s) Summer and Winter Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 460, 600, 720 Return Period(s) (years) 1, 30, 100 Climate Change (%) 0, 0, 40 VS/MH Return Climate First (X) First (Y) First (Z) Overflow Act. S1.000 S1 15 Numer 30 +0% 30/15 Summer S1.001 S1 15 Numer 30 +0% 30/15 Summer S1.002 S4 15 Ninter <t< td=""><td><u>30 year Return Period Summa</u></td><td>ry of Critical Results by Maximum for Storm</td><td><u>n Level (Rank 1)</u></td></t<>	<u>30 year Return Period Summa</u>	ry of Critical Results by Maximum for Storm	<u>n Level (Rank 1)</u>
Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0 Synthetic Rainfall Details Rainfall Model FSR Ratio R 0.345 Region England and Wales Cv (Summer) 0.750 M5-60 (mm) 17.200 Cv (Winter) 0.840 Margin for Flood Risk Warning (mm) 300.0 DVD Status OFF Analysis Timestep Fine Inertia Status ON DTS Status ON Profile(s) Summer and Winter Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720 Return Period(s) (years) 1, 30, 100 Climate Change (%) 0, 0, 40 VS/MK Return Climate First (X) First (Y) First (Z) Overflow FN Name Storm Period Change Surcharge Flood Overflow Act. S1.000 S1 15 Summer 30 +0% 100/15 Summer S1.001 S2 15 Winter 30 +0% 30/15 Summer S1.002 S3 15 Winter 30 +0% 30/15 Summer S1.003 S4 15 Winter 30 +0% 30/15 Summer S1.004 S5 15 Winter 30 +0% 30/15 Summer S1.004 S5 15 Winter 30 +0% 30/15 Summer S1.004 S5 15 Winter 30 +0% 30/15 Summer S1.005 S6 15 Winter 30 +0% 30/15 Summer S1.006 S7 15 Summer 30 +0% 30/15 Summer S1.007 S8 15 Winter 30 +0% 30/15 Summer S1.008 S1 55 Winter 30 +0% 30/15 Summer S1.004 S5 15 Winter 30 +0% 30/15 Summer S1.005 S6 15 Winter 30 +0% 30/15 Summer S1.006 S7 15 Winter 30 +0% 30/15 Summer S1.007 S8 15 Winter 30 +0% 30/15 Summer S1.008 S1 55 Summer 30 +0% 100/15 Summer S1.006 S7 15 Winter 30 +0% 30/15 Summer S1.007 S8 15 Winter 30 +0% 30/15 Summer S1.008 S1 55 Summer 30 +0% 100/15 Summer S1.008 S1 55 Summer 30 +0% 100/15 Summer S1.008 S1 55 Winter 30 +0% 30/15 Summer S1.008 S15 Simmer 30 +0% 100/15 Summer S1.009 S14 15 Winter 30 +0% 30/15 Summer S1.000 S14 15 Winter 30 +0% 30/15 Summer S1.001 S2 15 Winter 30 +0% 30/15 Summer S1.002 S15 Simmer 30 +0% 30/15 Summer S1.003 S16 15 Winter 30 +0% 30/15 Summer S1.004 S15 Winter 30 +0% 30/15 Summer S1.005 S16 15 Winter 30 +0% 30/15 Summer S1.006 S16 15 Winter 30 +0% 30/15 Summer S1.007 S16 15 Winter 30 +0% 30/15 Summer S1.008 S16 15 Winter 30 +0% 30/15 Summer S1.000 S20 15 Summer 30 +0% 30/15 Summer S1.000 S20 15 Summer 30 +0%	Areal Reduction Fac Hot Start (m. Hot Start Level Manhole Headloss Coeff (Glo Foul Sewage per hectare (J Number of Input Hy	Simulation Criteria ctor 1.000 Additional Flow - % of Tot ins) 0 MADD Factor * 10m ³ /ha (mm) 0 Inlet Coeff bal) 0.500 Flow per Person per Day (1/p L/s) 0.000 drographs 0 Number of Storage Structure	al Flow 0.000 Storage 2.000 Fiecient 0.800 per/day) 0.000 es 1
Synthetic Rainfall Details Rainfall Model FSR Ratio R 0.345 Region England and Wales Cv (Summer) 0.750 M5-60 (mm) 17.200 Cv (Winter) 0.840 Margin for Flood Risk Warning (mm) 300.0 DVD Status OFF Analysis Timestep Fine Inertia Status ON DTS Status ON Profile(s) Summer and Winter Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 460, 600, 720 Return Period(s) (years) OLS // Margin Return Climate First (X) First (Y) First (2) Overflow Climate Change (%) VS/MH Return Climate First (X) First (Y) First (2) Overflow Act. Silono Sil 15 Summer Silono Silo Silo Silo Silo Silo Silo Silono Silo Silo Silono Silo Silo Silo Minter Silono Silo Silo Minter	Number of Online Number of Offline	Controls 1 Number of Time/Area Diagram Controls 0 Number of Real Time Control	ms O ls O
Margin for Flood Risk Warning (mm) 300.0 DVD Status OFF Analysis Timestep Fine Inertia Status ON DTS Status ON ON Profile(s) Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720 Return Period(s) (years) Climate Change (%) Summer and Winter 1, 30, 100 O, 0, 40 VS/MH Return Climate First (X) First (Y) First (Z) Overflow Act. VS/MH Return Climate First (X) First (Y) First (Z) Overflow Act. S1.000 S1 15 Summer 30 +0% 100/15 Summer Flood Overflow Act. S1.001 S2 15 Winter 30 +0% 30/15 Summer Summer Summer Act. S1.002 S3 15 Winter 30 +0% 30/15 Summer Summer Summer Act. S1.001 S2 15 Winter 30 +0% 30/15 Summer Summer Summer Summer S1.002 S3 15 Winter 30 +0% 30/15 Summer Summer Summer Summer S1.004 S5 15 Winter 30 +0% 30/15 Summer	<u>S</u> Rainfall Mode Regic M5-60 (mm	ynthetic Rainfall Details 1 FSR Ratio R 0.345 n England and Wales Cv (Summer) 0.750) 17.200 Cv (Winter) 0.840	
Analysis Timestep Fine Inertia Status ON DTS Status ON Profile(s) Summer and Winter Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720 Return Period(s) (years) 1, 30, 100 Climate Change (%) 0, 0, 40 VS/MH Return Climate First (X) First (Y) First (Z) Overflow N Name Storm Period Change Surcharge Flood Overflow S1.000 S1 15 Summer 30 +0% 100/15 Summer Flood Overflow Act. S1.001 S2 15 Winter 30 +0% 100/15 Summer 100/15 Summer Sucharge S1.003 S4 15 Winter 30 +0% 100/15 Summer 100/15 Summer Summer S1.003 S4 15 Winter 30 +0% 30/15 Summer 100/15 Summer Summer S1.004 S5 15 Winter 30 +0% 100/15 Summer 100/15 Summer Summer S1.004 S5 15 Winter 30 +0% 100/15 Summer Store Summer Store S1.004 S5 15 Winter 30 +0% 100/15 Summer Store <td>Margin for Flood 1</td> <td>Risk Warning (mm) 300.0 DVD Status</td> <td>OFF</td>	Margin for Flood 1	Risk Warning (mm) 300.0 DVD Status	OFF
Profile(s) Summer and Winter Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720 Return Period(s) (years) 1, 30, 100 Climate Change (%) 0, 0, 40 VS/MH Return Climate First (X) First (Y) First (Z) Overflow Name Storm Period Change Surcharge Flood Overflow Act. \$1.000 \$1 15 Summer 30 +0% 100/15 Summer Overflow Act. \$1.001 \$2 15 Winter 30 +0% 30/15 Summer \$1.002 \$3 15 Winter 30 +0% 30/15 Summer \$2.000 \$4 15 Winter 30 +0% 30/15 Summer \$2.000 \$4 15 Winter 30 +0% 30/15 Summer \$3.000 \$6 15 Winter 30 +0% 30/15 Summer \$3.000 \$6 15 Winter 30 +0% 30/15 Summer \$1.004 \$5 15 Winter 30 +0% 30/15 Summer \$3.000 \$8 15 Summer 30 +0% 30/15 Summer \$3.000 \$8 15 Summer 30 +0% 30/15 Summer \$3.000 \$8 15 Winter 30 +0% 30/15 Summer \$3.0		Analysis Timestep Fine Inertia Status DTS Status ON	ON
Profile(s) Summer and Winter Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720 Return Period(s) (years) 1, 30, 100 Climate Change (%) 0, 0, 0, 40 US/MH Return Climate First (X) First (Y) First (Z) Overflow Nmme Storm Period Change Surcharge Flood Overflow Act. Silon: Silopia: Summer S			
Return Period(s) (years) Climate Change (%) 1, 30, 100 0, 0, 40 US/MH Return Climate Storm First (X) First (Y) First (Z) Overflow Overflow PN Name Storm Period Change Surcharge Flood Overflow S1.000 S1 15 Summer 30 +0% 100/15 Summer S1.001 S2 15 Winter 30 +0% 30/15 Summer S2.000 S4 15 Winter 30 +0% 30/15 Summer S1.003 S4 15 Winter 30 +0% 30/15 Summer S1.004 S5 15 Winter 30 +0% 30/15 Summer S1.004 S5 15 Winter 30 +0% 30/15 Summer S1.005 S6 15 Winter 30 +0% 30/15 Summer S1.006 S7 15 Winter 30 +0% 100/15 Summer S1.007 S8 15 Winter 30 +0%	Profile(s Duration(s) (mins) Summer an) 15, 30, 60, 120, 180, 240, 360, 480,	nd Winter 600, 720
Climate Change (%) 0, 0, 40 US/MH Return Climate First (X) First (Y) First (Z) Overflow Name Storm Period Change Surcharge Flood Overflow Act. \$1.000 \$1 15 Summer 30 +0% 100/15 Summer Flood Overflow Act. \$1.001 \$2 15 Winter 30 +0% 30/15 Summer	Return Period(s) (years)	, 30, 100
US/MH Return Climate First (X) First (Y) First (Z) Overflow Name Storm Period Change Surcharge Flood Overflow Act. \$1.000 \$1 15 Summer 30 +0% 100/15 Summer Flood Overflow Act. \$1.001 \$2 15 Winter 30 +0% 30/15 Summer Summer <t< td=""><td>Climate Change (%</td><td>)</td><td>0, 0, 40</td></t<>	Climate Change (%)	0, 0, 40
US/MH Return Climate First (X) First (Y) First (Z) Overflow Act. \$1.000 \$1 15 Summer 30 +0% 100/15 Summer Flood Overflow Act. \$1.001 \$2 15 Winter 30 +0% 30/15 Summer Summer Summer \$1.002 \$3 15 Winter 30 +0% 30/15 Summer Summer Summer \$2.000 \$4 15 Winter 30 +0% 30/15 Summer 100/15 Summer Summer \$3.003 \$6 15 Winter 30 +0% 30/15 Summer 100/15 Summer Summer \$3.004 \$5 15 Winter 30 +0% 30/15 Summer 100/15 Summer Summer \$3.004 \$5 15 Winter 30 +0% 30/15 Summer 100/15 Summer Summer \$3.005 \$6 15 Winter 30 +0% 30/15 Summer 100/15 Winter Summer \$3.006 \$7 15 Winter 30 +0% 30/15 Summer Summer Summer \$3.006 \$16 15 Summer 30 +0% 30/15 Summer Summer \$3.007 \$8 15 Wint			
S1.000 S1 15 Summer 30 +0% 100/15 Summer From the second s	US/MH Return PN Name Storm Period	Climate First (X) First (Y) Fi	irst (Z) Overflow Verflow Act
S1.000 S1 15 Summer 30 +0% 100/15 Summer S1.001 S2 15 Winter 30 +0% 30/15 Summer S1.002 S3 15 Winter 30 +0% 30/15 Summer S2.000 S4 15 Winter 30 +0% 30/15 Summer S1.003 S4 15 Winter 30 +0% 30/15 Summer S1.004 S5 15 Winter 30 +0% 30/15 Summer 100/15 Summer S1.004 S5 15 Winter 30 +0% 30/15 Summer 100/15 Winter S4.000 S8 15 Summer 30 +0% 30/15 Summer S1.005 S6 15 Winter 30 +0% 30/15 Summer S1.006 S7 15 Winter 30 +0% 100/15 Summer S1.006 S7 15 Winter 30 +0% 100/15 Summer S1.006 S7 15 Winter 30 +0% 100/15 Summer S1.007 S8 15 Winter 30 +0% 30/15 Summer S1.008 S9 15 Winter 30 +0% 30/15 Summer S1.008 S9 15 Winter 30 +0% 30/15 Summer S1.009 S10 15 Summer 30 +0% 30/15 Summer S1.000 S20 15 Summer 30 +0% 30/15			
S1.002 S3 15 Winter 30 +0% 30/15 Summer S2.000 S4 15 Winter 30 +0% 30/15 Summer S1.003 S4 15 Winter 30 +0% 30/15 Summer S3.000 S6 15 Winter 30 +0% 30/15 Summer 100/15 Summer S3.000 S6 15 Winter 30 +0% 30/15 Summer 100/15 Summer S1.004 S5 15 Winter 30 +0% 30/15 Summer 100/15 Summer S4.000 S8 15 Summer 30 +0% 30/15 Summer 100/15 Winter S4.000 S8 15 Summer 30 +0% 100/15 Summer 100/15 Summer S1.005 S6 15 Winter 30 +0% 100/15 Summer 100/15 Summer S1.006 S7 15 Winter 30 +0% 100/15 Summer 100/15 Summer S1.007 S8 15 Winter 30 +0% 30/15 Summer 100/15 Summer S1.008 S9 15 Winter 30 +0% 30/15 Summer 100/15 Summ	S1.000 S1 15 Summer 30 S1 001 S2 15 Winter 30	+0% 100/15 Summer +0% 30/15 Summer	
S2.000 S4 15 Winter 30 +0% 100/15 Summer S1.003 S4 15 Winter 30 +0% 30/15 Summer 100/15 Summer S3.000 S6 15 Winter 30 +0% 30/15 Summer 100/15 Summer S1.004 S5 15 Winter 30 +0% 30/15 Summer 100/15 Winter S4.000 S8 15 Summer 30 +0% 30/15 Summer 100/15 Winter S4.000 S8 15 Summer 30 +0% 30/15 Summer S1.005 S6 15 Winter 30 +0% 30/15 Summer S1.005 S6 15 Winter 30 +0% 100/15 Summer S1.006 S7 15 Winter 30 +0% 100/15 Summer S1.006 S7 15 Winter 30 +0% 100/15 Summer S1.007 S8 15 Winter 30 +0% 30/15 Summer S1.008 S9 15 Winter 30 +0% 30/15 Summer S1.008 S9 15 Winter 30 +0% 30/15 Summer S8.000 S16 15 Summer 30 +0% 30/15 Summer S1.009 S10 15 Winter 30 +0% 30/15 Summer S9.000 S18 15 Winter 30 +0% 30/15 Summer S10.000 S20 15 Summer	S1.002 S3 15 Winter 30	+0% 30/15 Summer	
S1.003 S4 15 Winter 30 +0% 30/15 Summer 100/15 Summer S3.000 S6 15 Winter 30 +0% 30/15 Summer 100/15 Summer S1.004 S5 15 Winter 30 +0% 30/15 Summer 100/15 Summer S4.000 S8 15 Summer 30 +0% 30/15 Summer 100/15 Winter S4.000 S8 15 Summer 30 +0% 100/15 Summer S1.005 S6 15 Winter 30 +0% 30/15 Summer S5.000 S10 15 Summer 30 +0% 100/15 Summer S6.000 S12 15 Summer 30 +0% 100/15 Summer S6.000 S12 15 Summer 30 +0% 100/15 Summer S1.007 S8 15 Winter 30 +0% 30/15 Summer S1.008 S9 15 Winter 30 +0% 30/15 Summer S1.008 S9 15 Winter 30 +0% 30/15 Summer S1.009 S10 15 Winter 30 +0% 30/15 Summer S1.000 S20 15 Summer 30 +0% 30/15 Summer S10.000 S20 15 Summer 30 +0%<	S2.000 S4 15 Winter 30	+0% 100/15 Summer	
S3.000 S6 15 Winter 30 +0% 30/15 Summer 100/15 Summer S1.004 S5 15 Winter 30 +0% 30/15 Summer 100/15 Winter S4.000 S8 15 Summer 30 +0% 30/15 Summer S1.005 S6 15 Winter 30 +0% 30/15 Summer S5.000 S10 15 Summer 30 +0% 30/15 Summer S5.000 S10 15 Summer 30 +0% 100/15 Summer S1.006 S7 15 Winter 30 +0% 100/15 Summer S6.000 S12 15 Summer 30 +0% 100/15 Summer S1.007 S8 15 Winter 30 +0% 30/15 Summer S7.000 S14 15 Winter 30 +0% 30/15 Summer S1.008 S9 15 Winter 30 +0% 30/15 Summer S8.000 S16 15 Summer 30 +0% 30/15 Summer S1.009 S10 15 Winter 30 +0% 30/15 Summer S9.000 S18 15 Winter 30 +0% 30/15 Summer S10.000 S20 15 Summer 30 +0% S10.001 S21 15 Summer 30 +0% S10.001 S21 15 Summer 30 +0% <t< td=""><td>S1.003 S4 15 Winter 30</td><td>+0% 30/15 Summer 100/15 Summer</td><td></td></t<>	S1.003 S4 15 Winter 30	+0% 30/15 Summer 100/15 Summer	
S1.004 S5 15 Winter 30 +0% 100/15 Summer S4.000 S8 15 Summer 30 +0% 100/15 Summer S1.005 S6 15 Winter 30 +0% 30/15 Summer S5.000 S10 15 Summer 30 +0% 100/15 Summer S1.006 S7 15 Winter 30 +0% 100/15 Summer S6.000 S12 15 Summer 30 +0% 100/15 Summer S1.007 S8 15 Winter 30 +0% 100/15 Summer S1.007 S8 15 Winter 30 +0% 30/15 Summer S7.000 S14 15 Winter 30 +0% 30/15 Summer S1.008 S9 15 Winter 30 +0% 30/15 Summer S8.000 S16 15 Summer 30 +0% 30/15 Summer S1.009 S10 15 Winter 30 +0% 30/15 Summer S1.000 S11 15 Winter 30 +0% 30/15 Summer S10.000 S20 15 Summer 30 +0% S10.001 S21 15 Summer 30 +0% S10.001 S21 15 Summer 30 +0% S10.001 S21 15 Summer 30 +0% S10.015 S	S3.000 S6 15 Winter 30	+0% 30/15 Summer 100/15 Summer	
S1.005 S6 15 Winter 30 +0% 30/15 Summer S5.000 S10 15 Summer 30 +0% 100/15 Summer S1.006 S7 15 Winter 30 +0% 100/15 Summer S6.000 S12 15 Summer 30 +0% 100/15 Summer S6.000 S12 15 Summer 30 +0% 100/15 Summer S1.007 S8 15 Winter 30 +0% 100/15 Summer S7.000 S14 15 Winter 30 +0% 30/15 Summer S1.008 S9 15 Winter 30 +0% 30/15 Summer S8.000 S16 15 Summer 30 +0% 30/15 Summer S1.009 S10 15 Winter 30 +0% 30/15 Summer S9.000 S18 15 Winter 30 +0% 30/15 Summer S1.010 S11 15 Winter 30 +0% 30/15 Summer S10.000 S20 15 Summer 30 +0% S10.001 S21 15 Summ	S4.000 S8 15 Summer 30	+0% 100/15 Summer	
S5.000 S10 15 Summer 30 +0% 100/15 Summer S1.006 S7 15 Winter 30 +0% 100/15 Summer S6.000 S12 15 Summer 30 +0% 100/15 Summer S1.007 S8 15 Winter 30 +0% 100/15 Summer S7.000 S14 15 Winter 30 +0% 30/15 Summer S1.008 S9 15 Winter 30 +0% 30/15 Summer S1.008 S9 15 Winter 30 +0% 30/15 Summer S1.008 S9 15 Winter 30 +0% 30/15 Summer S1.009 S10 15 Winter 30 +0% 30/15 Summer S1.010 S11 15 Winter 30 +0% 30/15 Summer S10.000 S20 15 Summer 30 +0% 100/15 Summer S10.001 S21	S1.005 S6 15 Winter 30	+0% 30/15 Summer	
\$1.006 \$7 15 Winter 30 +0% 100/15 Summer \$6.000 \$12 15 Summer 30 +0% 100/15 Summer \$1.007 \$8 15 Winter 30 +0% 100/15 Summer \$7.000 \$14 15 Winter 30 +0% 30/15 Summer 100/15 Summer \$7.000 \$14 15 Winter 30 +0% 30/15 Summer 100/15 Summer \$8.000 \$16 15 Summer 30 +0% 30/15 Summer \$8.000 \$16 15 Summer 30 +0% 30/15 Summer \$1.009 \$10 15 Winter 30 +0% 30/15 Summer \$9.000 \$18 15 Winter 30 +0% 30/15 Summer \$9.000 \$18 15 Winter 30 +0% 30/15 Summer \$1.010 \$11 15 Winter 30 +0% 30/15 Summer \$10.000 \$20 15 Summer 30 +0% \$10.001 \$21 15 Summer 30 +0% \$10.001 \$21 15 Summer 30 +0% Solutions	S5.000 S10 15 Summer 30	+0% 100/15 Summer	
S6.000 S12 15 Summer 30 +0% 100/15 Summer S1.007 S8 15 Winter 30 +0% 100/15 Summer S7.000 S14 15 Winter 30 +0% 30/15 Summer 100/15 Summer S1.008 S9 15 Winter 30 +0% 30/15 Summer S8.000 S16 15 Summer 30 +0% 100/15 Summer S1.009 S10 15 Winter 30 +0% 30/15 Summer S9.000 S18 15 Winter 30 +0% 30/15 Summer S1.010 S11 15 Winter 30 +0% 30/15 Summer S10.000 S20 15 Summer 30 +0% 30/15 Summer S10.001 S21 15 Summer 30 +0% 100/15 Summer	S1.006 S7 15 Winter 30	+0% 100/15 Summer	
S1.007 S8 15 Winter 30 +0% 100/15 Summer S7.000 S14 15 Winter 30 +0% 30/15 Summer 100/15 Summer S1.008 S9 15 Winter 30 +0% 30/15 Summer 100/15 Summer S8.000 S16 15 Summer 30 +0% 100/15 Summer S1.009 S10 15 Winter 30 +0% 30/15 Summer S9.000 S18 15 Winter 30 +0% 30/15 Summer S1.010 S11 15 Winter 30 +0% 30/15 Summer S10.000 S20 15 Summer 30 +0% S10.001 S21 15 Summer 30 +0% 100/15 Summer	S6.000 S12 15 Summer 30	+0% 100/15 Summer	
S1.000 S9 15 Winter 30 +0% 30/15 Summer S1.008 S9 15 Winter 30 +0% 100/15 Summer S8.000 S16 15 Summer 30 +0% 100/15 Summer S1.009 S10 15 Winter 30 +0% 30/15 Summer S9.000 S18 15 Winter 30 +0% 30/15 Summer S1.010 S11 15 Winter 30 +0% 30/15 Summer S10.000 S20 15 Summer 30 +0% S10.001 S21 15 Summer 30 +0% 100/15 Summer	SI.UU/ S8 15 Winter 30	+U% IUU/IS Summer +O% 30/15 Summer 100/15 Summer	
S8.000 S16 15 Summer 30 +0% 100/15 Summer S1.009 S10 15 Winter 30 +0% 30/15 Summer S9.000 S18 15 Winter 30 +0% 30/15 Summer S1.010 S11 15 Winter 30 +0% 30/15 Summer S10.000 S20 15 Summer 30 +0% Summer S10.001 S21 15 Summer 30 +0% Solutions	S1.008 S9 15 Winter 30	+0% 30/15 Summer	
S1.009 S10 15 Winter 30 +0% 30/15 Summer S9.000 S18 15 Winter 30 +0% 30/15 Summer S1.010 S11 15 Winter 30 +0% 30/15 Summer S10.000 S20 15 Summer 30 +0% S10.001 S21 15 Summer 30 +0% S10.001 S21 15 Summer 30 +0% S10.001 S21 15 Summer 30 +0%	S8.000 S16 15 Summer 30	+0% 100/15 Summer	
\$9.000 \$18 15 Winter 30 +0% 30/15 Summer \$1.010 \$11 15 Winter 30 +0% 30/15 Summer \$10.000 \$20 15 Summer 30 +0% \$10.001 \$21 15 Summer 30 +0% 100/15 Summer \$000 \$20 15 Summer \$20 +0% 100/15 Summer \$20 +0% 100/15 Summer	S1.009 S10 15 Winter 30	+0% 30/15 Summer	
\$1.010 \$11 15 Winter 30 +0% 30/15 Summer \$10.000 \$20 15 Summer 30 +0% \$10.001 \$21 15 Summer 30 +0% 100/15 Summer \$(0) 982-2015 \$20 \$20 \$15 \$20 \$15 \$20 \$15 \$20 \$15 \$20 \$10 \$100 \$15 \$20 \$100 \$100 \$15 \$20 \$100 \$100 \$15 \$20 \$100 \$100 \$15 \$20 \$100 \$100 \$15 \$20 \$100 \$100 \$100 \$100 \$100 \$100 \$100	S9.000 S18 15 Winter 30	+0% 30/15 Summer	
S10.000 S20 15 Summer 30 +0% S10.001 S21 15 Summer 30 +0% 100/15 Summer ©1982-2015 XP Solutions	S1.010 S11 15 Winter 30	+0% 30/15 Summer	
©1982-2015 XP Solutions	S10.000 S20 15 Summer 30 S10.001 S21 15 Summer 30	+0% +0% 100/15 Summer	
	©	1982-2015 XP Solutions	

CK21 Consultants		Page 19
1 Mosley Street		
Newcastle Upon Tyne		<u> </u>
NE1 1YE		Micco
Date 22/12/2016 15:25	Designed by d.webb	
File Salcombe Avenue - Jarro	Checked by	Diamarje
Causeway	Network 2015.1	

<u>30 year Return Period Summary of Critical Results by Maximum Level (Rank 1)</u> <u>for Storm</u>

	US/MH	Water Level	Surcharged Depth	Flooded Volume	Flow /	Overflow	Pipe Flow		Level
PN	Name	(m)	(m)	(m³)	Cap.	(1/s)	(1/s)	Status	Exceeded
S1.000	S1	12.173	-0.065	0.000	0.25		1.9	OK	
S1.001	S2	12.094	0.044	0.000	0.34		2.5	SURCHARGED	
S1.002	s3	12.081	0.175	0.000	0.53		3.9	SURCHARGED	
S2.000	S4	12.037	-0.053	0.000	0.22		1.6	OK	
S1.003	S4	12.031	0.350	0.000	1.06		7.2	SURCHARGED	2
S3.000	S6	11.963	0.116	0.000	0.20		1.4	SURCHARGED	4
S1.004	S5	11.957	0.344	0.000	1.26		9.6	SURCHARGED	1
S4.000	S8	11.752	-0.066	0.000	0.24		1.8	OK	
S1.005	S6	11.434	0.150	0.000	1.93		12.6	SURCHARGED	
S5.000	S10	11.180	-0.066	0.000	0.24		1.8	OK	
S1.006	s7	11.044	-0.033	0.000	0.96		16.1	OK	
S6.000	S12	10.986	-0.065	0.000	0.25		1.8	OK	
S1.007	S8	10.817	-0.063	0.000	0.64		19.4	OK	
S7.000	S14	10.680	0.035	0.000	0.20		1.5	SURCHARGED	2
S1.008	S9	10.674	0.194	0.000	1.30		21.8	SURCHARGED	
S8.000	S16	10.535	-0.065	0.000	0.25		1.8	OK	
S1.009	S10	10.341	0.057	0.000	0.75		24.3	SURCHARGED	
S9.000	S18	10.195	0.153	0.000	0.17		1.2	SURCHARGED	
S1.010	S11	10.190	0.310	0.000	1.61		26.9	SURCHARGED	
S10.000	S20	9.528	-0.065	0.000	0.25		1.8	OK	
S10.001	S21	9.386	-0.049	0.000	0.51		3.9	OK	

CK21 Co	nsulta	nts								Pag	ge 20
1 Mosle	y Stre	et									
Newcast	le Upo	n Tvne								4	
NE1 1VE	10 010										~ m
NEI IIE	(10 (00									- M	icro
Date 22,	/12/20	16 15:25		De	signed	by d.	.webb			D	onenie
File Sa	lcombe	Avenue -	- Jarro	Ch	ecked	by				וט	anaye
Causewa	y			Ne	twork	2015.1	L			-	
30 1000	Potur	n Period	Summar	w of C	ritica	l Posu	lte hv	, M⊃	vimum Ton		(Pank 1)
<u>JU year</u>	Netur		Summar	<u>.y oi c.</u> f	or Ctor	rm	<u>iilis Dy</u>	ha		<u>et</u>	
				<u></u>	or sto						
			Determ	61 i		(37)		L /1	n Timet	(=)	0
DN	US/MH	Storm	Return	Climate	First	(X)	Firs	τ (1	() First	(2) 1 or 1	Overiiow
PN	Name	Storm	Period	Change	Surch	large	FI	000	Overi	TOM	ACT.
S1.011	S12	15 Winter	30	+0%	30/15	Summer					
s11.000	S21	15 Summer	30	+0%							
S1.012	S13	15 Winter	30	+0%	30/15	Summer					
S1.013	S14	15 Summer	30	+0%	30/15	Summer					
S1.014	S15	120 Winter	30	+0%	30/30	Winter					
S12.000	S16	60 Winter	30	+0%	30/15	Summer	100/15	5 Su	mmer		
s13.000	S28	15 Summer	30	+0%	100/15	Summer					
S13.001	S29	60 Winter	30	+0%	100/15	Summer					
S12.001	S28	30 Winter	30	+0%	30/15	Summer					
S14.000	S31	15 Summer	30	+0%	100/15	Summer					
S12.002	S32	60 Winter	30	+0%	30/15	Summer					
s15.000	S33	15 Summer	30	+0%	100/15	Summer					
S15.001	S34	15 Summer	30	+0%	100/15	Summer					
S12.003	S35	60 Winter	30	+0%	30/15	Summer					
S12.004	S36	60 Winter	30	+0%	1/30	Summer					
S16.000	S37	15 Summer	30	+0%	100/15	Winter					
S16.001	S38	15 Summer	30	+0%	100/15	Summer					
S12.005	S39	60 Winter	30	+0%	1/30	Summer					
S12.006	S40	60 Winter	30	+0%	1/15	Summer					
S1.015	S41	180 Winter	30	+0%	1/15	Summer	100/120) Wi	nter		
S1.016	S42	180 Winter	30	+0%	1/15	Summer	100/180) Su	mmer		
		Water S	Surcharge	ed Flood	ed		P:	ipe		_	_
	US/M	MH Level	Depth	Volum	ne Flow	/ Over	flow F	Low		I	Level
PN	Name	e (m)	(m)	(m³)	Cap	. (1	/s) (1	/s)	Status	Ex	ceeded
S1 0	11 91	2 9 11/	0.07	15 0 0	00 0	96	3	1 2	SUBCHARCE	D	
S1.0	11 S1	2 9.114	-0.0	10 0.0		26	J	1 9	JUNCHANGE	r	
C1 0	00 32 12 C1	3 9 010	0.01		00 1 1	20 21	0	1.J	SUBCHADCED	*	
Q1 0	13 Q1	4 8 981	0.0		00 1	10	ມ ເ	4 Q	SURCHARGED	D	
S1.0	10 01 17 91	5 8 684	0.0			26	5		SURCHARGE		
\$12.0	00 91	6 9 008	0.0	74 0 0		37		26	SURCHARGE	n	1.0
S12.0	00 S2	28 9.104	-0.0	75 0.0	00 0.1	13		0.9	0	K	10
S13.0	01 52	9 9 001	-0.00		00 0	12		0.8	0	ĸ	
S12.0	01 52	29 9.001	0.23	20 0.0		63		5 0	SURCHARGED	*	
S12.0	00 53	1 9 025	-0.08	36 0.0		05 15		0 5	00110111110110	K	
S11.0	00 BS 02 S3	32 8.979	0.34	47 0.0	00 0.1	39		3.1	SURCHARGED	*	
S12.0	00 S3	3 9.105	-0.0	55 0.0	00 0.3	25		1.7	0	K	
S15 0	01 53	34 9.016	-0.0	57 0 0	00 0	36		2.7	0	K	
S12 0	03 53	35 8.979	0 44	16 0.0	00 0	 65		5.0	SURCHARGE	D	
S12.0	04 53	36 8,910	0.7	79 0.0	00 0 1			5.6	SURCHARGE	D	
S16.0	00 53	37 9.127	-0.00	56 0.0		2.4		1.8	0 0 1 1 0 1 1 1 0 E	ĸ	
S16.0	01 53	38 8.977	-0.0	54 0.0	00 0	40		2.6	0	K	
S12.0	05 53	39 8.888	0.80)8 0.0	00 0'	76		6.0	SURCHARGED	*	
s12.0	06 54	10 8.801	1.00	0.0	00 0.0	65		5.0	SURCHARGE	D	
S1.0	15 S4	1 8.844	1.48	38 0.0	00 0.2	26		9.4	SURCHARGE	D	7
S1.0	16 S4	12 8.974	1.73	31 0.0	00 0.1	17		4.5	SURCHARGE	D	7
			@1	982-20	15 XP (50111+i	ons				
1			91			u					

Appendix F

SuDS Maintenance Plan

SuDS, Bio-retention/Detention Basin, Maintenance and Management Plan

Salcombe Avenue

South Tyneside Homes

Mar 17

Document Validation

Revision History

Revision Ref	Issue Date	Purpose of issue / description of revision
А	31/03/2017	For Planning

Quality Assurance

	Purpose of issue / "R	description of rev eason for Issue"	/ision / version
	Prepared by	Checked by	Approved by
Name	David Webb	Mark Bryden	lain Hush
Signature	S.	MM.	Samol

This report has been prepared by CK21 Ltd with all reasonable skill, care and diligence, within the terms of the Contract with the Client. The report is confidential to the Client and CK21 Ltd accepts no responsibility of whatever nature to third parties to whom this report may be made known.

No part of this document may be reproduced without the prior written approval of CK21 Ltd.

Contents

Surface Water	Drainage Overview	. 3
Drainage	Overview	. 3
Bio-Retention/I	Detention Basin	.4
Technique	e Overview	.4
Operation	& Maintenance Requirements	.4
1.1. Main	tenance Plan Overview – Bio-Retention/Detention basin	.5
Table 1 –	Detention Basin - Maintenance Schedule	.5
1.1.1	Regular Maintenance	.6
1.1.2	Occasional Maintenance	. 8
1.1.3	Remedial Maintenance	.9
1.1.4	Construction Requirements	.9
2.1. Refe	rences	10

Surface Water Drainage Overview

Drainage Overview

Surface water discharge from the site , to the NWL surface water sewer, is restricted by a Hydrobrake Vortex control(s) to a rate of 5 l/s. Attenuation and water treatment is provided by the incorporation of a Bio retention Basin, upstream of the flow control.

South Tyneside Homes are the organisation responsible for the basin. With the maintenance of such undertaken by themselves or a direct sub contractor.

The purpose of this report is to set out the maintenance and management of the drainage, SuDS, culvert and watercourse relating to the proposed residential development by Story Homes.

The Maintenance Plan should be considered as a live document with items tailored to reflect the requirements of the particular site.

Bio-Retention/Detention Basin

The basin is located to the west of the development, within an area of amenity space, under the ownership of South Tyneside Homes. The sides of the basin are sloped at a gradient of 1:4, with a flat bottom of approximately 60m2. The planting proposals will include for a mix of 'Wildflower Grass: WFG15', 'Eco Species Rich Lawn: WFG20' and 'Amenity Grass: A22' as well as water compatible planting to the base of the basin. To be appropriately specified by a landscape architect, during the detailed design stage.

Technique Overview

Detention basins are surface storage basins or facilities that provide flow control through attenuation of stormwater runoff. They also facilitate some settling of particulate pollutants. Detention basins are normally dry and in certain situations the land may also function as a recreational facility.

Detention basins are dry basins that attenuate stormwater runoff by providing temporary storage and controlled release of detained runoff. They are normally vegetated depressions that are mainly dry, except during and immediately after storm events. They may be designed with a small permanent pool at the outlet to help prevent re-suspension of sediment particles by high intensity storms and to provide enhanced water quality treatment for frequent events.

Operation & Maintenance Requirements

Regular inspection and maintenance is important for the effective operation of detention basins as designed. Maintenance responsibility will be placed with the appointed Management Company for the site.

Regular mowing in and around detention basins is required only along maintenance access routes, amenity areas (eg footpaths), across embankments and across the main storage area. The remaining areas can be managed as "meadow", unless additional management is required for landscaping purposes.

Adequate access will be available to the detention basin for inspection and maintenance, including for appropriate equipment and vehicles, eg mowing equipment. Operation and maintenance requirements for detention basins are described in Table 1

Many of the maintenance activities for detention basins can be undertaken as part of landscape maintenance and should have marginal cost implications.

1.1. Maintenance Plan Overview – Bio-Retention/Detention basin

Maintenance Schedule	Required Action	Frequency
	Litter, debris and trash removal	Monthly (or as required)
	Grass Cutting – for landscaped areas and access routes	See Landscaping Management Plan
Popular Maintananaa	Grass Cutting – meadow grass in and around basin	See Landscaping Management Plan
Regular Maintenance	Manage other vegetation and remove nuisance plants	See Landscaping Management Plan
	Tidy all dead growth before start of growing season	See Landscaping Management Plan
	Re-seed areas of poor vegetation growth	See Landscaping Management Plan
Occasional Maintenance	Prune & trim trees and remove cuttings	See Landscaping Management Plan
	Repair of erosion or other damage by re- seeding or re-turfing	As required
	Remove silt build up and restore basin to design contours	7-10 years as required
Remedial Actions	Repair/Replace inlet/outlet structures	As required
	Rehabilitate infiltration surface using scarifying and spiking techniques if performance deteriorates	1 per 5 years or As required
	Inspect inlet/outlet and downstream catchpit for blockages, and clear if required	Bi Monthly/after large storms
	Inspect banksides, inlet/outlet for damage	Bi Monthly/after large storms
Monitoring	Inspect Hydrobrake chamber for blockage, and clear if required	Bi Monthly/after large storms

Table 1 – Detention Basin - Maintenance Schedule

1.1.1 Regular Maintenance

Inspections & Reporting

Regular Drainage scheme inspections will:

- help determine optimum future maintenance activities
- confirm hydraulic, water quality, amenity and ecological performance
- Allow identification of potential system failures, e.g. blockage, poor infiltration, poor water quality etc.

Inspections can generally be required at Bi monthly site visits (e.g. for grass cutting) for little additional cost, and should, therefore, be subsumed into regular maintenance requirements. During the first year of operation, inspections should ideally be carried out after every significant storm event to ensure proper functioning, but in practice this may be difficult or impractical to arrange.

Typical routine inspection questions that will indicate when occasional or remedial maintenance activities are required, and/or when water quality requires investigation include:

_ are inlets or outlets blocked?

- _ does any part of the system appear to be leaking (especially ponds and wetlands)?
- _ is the vegetation healthy?
- _ is there evidence of poor water quality (e.g. algae, oils, milky froth, odour, unusual colourings)?
- _ is there evidence of sediment build-up?
- _ is there evidence of ponding above an infiltration surface?
- _ is there any evidence of structural damage that requires repair?
- _ are there areas of erosion or channelling over vegetated surfaces?

It is recommended that an annual maintenance report and record should be prepared by the maintenance contractor which should be retained with the owner's manual. The report should provide the following information:

- observations resulting from inspections
- measured sediment depths (where appropriate)
- monitoring results, if flow or water quality monitoring was undertaken
- maintenance and operation activities undertaken during the year
- Recommendations for inspection and maintenance programme for the following year.

Litter/debris removal

This is an integral part of SUDS maintenance and reduces the risks of inlet and outlet blockages, retains amenity value and minimises pollution risks.

Grass cutting

It is recommended that grass cutting be minimised around SUDS facilities. In general, allowing grass to grow tends to enhance water quality performance.

Grass cutting is an activity undertaken primarily to enhance the perceived aesthetics of the facility. The frequency of cutting will tend to depend on surrounding land uses, and public requirements. Therefore, grass cutting should be done as infrequently as possible, recognising the aesthetic concerns of local residents. However, grass around inlet and outlet infrastructure should be strimmed closely to reduce risks to system performance. If a manicured, parkland effect is required, then cutting will need to be undertaken more regularly than for meadow type grass areas, which aim to maximise habitat and biodiversity potential.

Weed/invasive plant control

Weeds are generally defined as vegetation types that are unwanted in a particular area. For SUDS, weeds are often alien or invasive species, which do not enhance the technical performance or aesthetic value of the system, or non-native species and the spread of which is undesirable.

In some places, weeding has to be done by hand to prevent the destruction of surrounding vegetation (hand weeding should generally be required only during the first year, ie during plant establishment). However, over grassed surfaces, mowing can be an effective management measure. The use of herbicides and pesticides should be prohibited since they cause water quality deterioration. The use of fertilisers should also be limited or prohibited to minimise nutrient loadings which are damaging to water bodies.

Shrub management

Shrubs tend to be densely planted and are likely to require weeding at the base, especially during the first year to ensure that they get enough water. Shrubs should be selected so they can grow to their maximum natural height without pruning.

1.1.2 Occasional Maintenance

Sediment Removal

To ensure long-term effectiveness, the sediment that accumulates in feature should be removed periodically. The required frequency of sediment removal is dependent on many factors including:

- design of upstream drainage system
- type of system
- design storage volume

• Characteristics of upstream catchment area (e.g. land use, level of imperviousness, upstream construction activities, erosion control management and effectiveness of upstream pre-treatment).

Sediment accumulation will typically be rapid for the entire construction period (including time required for the building, turfing and landscaping of all upstream development plots). Once a catchment is completely developed and all vegetation is well-established, sediment mobility and accumulation is likely to drop significantly.

Vegetation/plant replacement

Some replacement of plants may be required in the first 12 months after installation, especially after storm events. Dead or damaged plants should be removed and replaced to restore the prescribed number of living plants per hectare.

Inspection programmes should identify areas of filtration, or infiltration surfaces where vegetation growth is poor and likely to cause a reduced level of system performance. Such areas can then be rehabilitated and plant growth repaired.

1.1.3 Remedial Maintenance

Structure Rehabilitation/repair

Headwall inlet/outlets and associated fittings may require repair/replacement in the long term. These features should be monitored for determination/vandalism.

1.1.4 Construction Requirements

The bottom and side slopes of the basin should be carefully prepared to ensure that they are structurally sound and checks should be made that any embankment structures meet their design criteria. The preparation should also ensure that the basin will satisfactorily retain the surface water runoff without significant erosion damage.

Backfilling against inlet and outlet structures needs to be controlled to minimise settlement and erosion. The soils used to finish the side slopes need to be suitably fertile, porous and of sufficient depth to ensure healthy vegetation growth. If an impermeable liner is used, care should be taken to ensure that it is not damaged during construction.

During the establishment phase, runoff from bare soils should be minimised.

For example:

- vegetative on slopes should be rapidly established
- base-of-slope trenches should be introduced to retain the inevitable runoff of sediments

Construction should be timed to avoid autumn and winter when high runoff rates are to be expected.

2.1. References

Woods-Ballard, B, Kellagher, R Martin, P, Jefferies, C, Bray, R, Shaffer, P

The SUDs Manual

CIRIA (2015)

Appendix G

NWL Pre Development Enquiry Response & Plans

T: +44 (0) 345 609 4639 F: +44 (0) 191 419 6510 www.nwl.co.uk Leat House Pattinson Road Washington NE38 8LB

 Ext:
 36603

 Direct Line:
 0191 419 6603

 Email:
 niki.mather@nwl.co.uk

 Our Ref:
 17NO456E24

 Your Ref:
 17NO456E24

Friday, 03 February 2017

CK21 18 Shakespeare Street Newcastle NE1 6AQ

Dear Mr. David Webb,

Re: Pre-Development Enquiry – Salcombe Avenue, Jarrow

Further to receiving the Pre-Development Enquiry for the above site, received 9th January 2017, we are now able to provide the following response.

We have based our response on the information in your application and accompanying correspondence. Therefore, should any of the information now be different, then you must ensure that you inform us of any changes as further Network Modelling may be required and our response may also change, leading to this response being invalid.

Northumbrian Water assesses the impact of the proposed development on our assets and assesses the capacity within our network's to accommodate and treat the anticipated flows arising from the development. We do not therefore offer comment on aspects of planning applications that are outside of our area of control.

Enclosed for your information is a scaled extract showing the approximate position of our water and wastewater networks and associated assets. Please note that the actual position of any of our assets shown on the plan must be established by taking trial holes in all cases.

An appropriate risk assessment and method statement (RAMS) must be provided to us prior to gaining approval for any trial hole investigations, at least 5 working days in advance of starting any work onsite.

Also enclosed is our extract showing locations within the approximate vicinity of this site that have, from our records, experienced flooding. This has been provided to demonstrate the known flood risks within the vicinity which have been considered as part of our assessment on this enquiry.

We have also carried out a review of your application and can confirm the following:

Sewerage and Sewerage Treatment

Northumbrian Water would ask that you separate the foul and surface water flows in accordance with Part H of the Building Regulations prior to the final connection to the public sewer.

Northumbrian Water Limited Registered in England and Wales No 2366703 Registered office: Northumbria House, Abbey Road, Pity Me, Durham, DH1 5FJ All new connections to the public sewerage system must first be approved through the Section 106 of the Water Industry Act 1991 process prior to construction.

Should you decide to proceed with this development, a fully completed Sewer Connection application form will be required. These are available to download from the following link:

https://www.nwl.co.uk/developers/new-connections.aspx

• Foul Water Discharge

The foul flows can discharge without restriction into the 225mm diameter combined public sewer within Salcombe Avenue, as follows:

- 1. Manhole 6406 0.5 l/sec
- 2. Manhole 7303 0.3 l/sec
- 3. Manhole's 7303 to 7301 0.3. l/sec
- Surface Water Discharge

In applying for planning permission you will be required to demonstrate to the Local Planning Authority through your flood risk appraisal that you have considered the 3 alternative options for the management of surface water which are listed within Part H of the Building Regulations 2010:

(a) an adequate soakaway or some other adequate infiltration system; or, where that is not reasonably practicable,

(b) a watercourse; or, where that is not reasonably practicable,

(c) a sewer.

If the more sustainable options prove to be unfeasible, a restricted surface water flow of 5 l/sec would be permitted to discharge into the 600mm diameter surface water sewer via manhole 6302. Any excess in flows must be attenuated on site.

• Protection of Existing Sewerage Assets

We wish to draw your attention to the existing sewer's which pass through the site. These sewer's could be diverted, protected or accommodated within your site layout with an appropriate easement.

Part H of the Building Regulations also details the reasons why Northumbrian Water does not permit buildings to be built over or near to its sewerage network:

- Undue risk in the event of failure of the drain or sewer
- Maintaining access
- Protection of the drain or sewer during construction
- Protection form settlement
- Protection against piling

To discuss the diversion of this asset in further detail, please contact:

Mr. Roger Perkins 0191 419 6621 roger.perkins@nwl.co.uk

• Sewage Treatment Capacity

The Sewage Treatment Works to which this development finally discharges to is able to accept the additional flows.

Water Efficiency Information

Water efficiency information can be found on our website by following the web link below:

https://www.nwl.co.uk/your-home/saving-water/why-save-water.aspx

Please note that this response is valid for 1 year only and you should resubmit your proposals should this period lapse prior to your development beginning.

Should you require any further assistance or information, then please do not hesitate to contact me via <u>niki.mather@nwl.co.uk</u> or alternatively on 0191 419 6603, please quote our reference number above in any future correspondence.

Yours sincerely,

Mr. Niki Mather Technical Support Advisor Asset Protection - New Development

vork - Network Types AB Asbestos XXX Distribution Abandoned Abandoned Abandoned Fire Out of Comm	Date: 12/01/2017 12:46:00 Map Sheet: NZ3364SE Paper / Scale: NZ3364SE Paper / Scale: A3@1:1250 Crown Copyright Reserved. Licence No.100022480. atsoever is accepted by Northumbrian Water, it's of trial holes in all cases. In the case of water mains private lateral drains and sewers together in these former private drains and sewers together in there could be abaetos af the pipes or any failure to take adequate precautions.	
Four Networks Combined Four Networks Surface Four Surface	 User : BOWMS Title : Centre Point : 433684,564443 Centre Point : 043684,564443 ce Survey map with permission of the controller of H.M.S.O. tis or severs shown on the pin must be established by takin, ins or severs shown on the pin must be established by takin, into to excarte trial holes. With effect from 1 October 2011, in of the pursuant to section 105A Water Industry Act 1991 ould be anticipated. WARNINGWhere indicated on the pin bandoned asbestos cement materials, the appropriate Health s or other liabilities which arise as the result of the presence or presence or the result of the presence or the presence or the result of the presence or the presence or the result of the presence or the presence or the result of the presence or the pre	
Water - NWL Responsibility Private/Non NWL Foul Eoul Surface Foul Surface Surface Untreated Eff Watercourse	ORTHUNDER AND ATER <i>(www.gww.gww.gww.gww.gww.gww.gww.gww.gww</i>	

Appendix H

SuDS Detail Drg

Fer Fer Lor

T1	030217	Issued for Tender	кs	DW
Rev	Date	Description	Drawn	Chkd
Project SALCOMBE AVENUE, JARROW RESIDENTIAL DEVELOPMENT				
Client SOUTH TYNESIDE HOUSING VENTURES				
Architect				
Title DRAINAGE DETAILS SHEET 3				
Scale		Drawn	Date	
1:100		DW		
			Rev.	
10124		4 C-GA-206	I	I
CK21 Consultants LLP Shakespeare House, 18 Shakespeare St, Newcastle upon Tyne, NE1 6AQ,				
www.ck21.co.uk initial.surname@ck21.co.uk Telephone: (0191) 261 6312				
TENDER				